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Figure 5.3 Top panel: Interaction term leads to convergence and then cross-
over for increasing x. Bottom panel: Interaction term leads to divergence of
treatment effects.
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We can then test for treatment effect, by testing

H0 : β2 = 0.

If the treatment (β2z) term is not significant, we can reduce again, to

μi = β0 + β1xi (common line).

We could, for completeness, then test for an age effect, by testing

H0 : β1 = 0

(though usually we would not do this – we know blood pressure does increase
with age). The final, minimal model is

μi = β0.

These four models – with one, two, three and four parameters – are nested
models. Each is successively a sub-model of the ‘one above’, with one more
parameter. Equally, we have nested hypotheses

β3 = 0,

β2(= β3) = 0,

β1(= β2 = β3) = 0.

Note 5.7

In the medical context above, we are interested in treatments (which is the
better?). But we are only able to test for a treatment effect if there is no
interaction. Otherwise, it is not a question of the better treatment, but of which
treatment is better for whom.

5.2.1 Nested Models

Update. Using a full model, we may wish to simplify it by deleting non-
significant terms. Some computer packages allow one to do this by using a
special command. In S-Plus/R� the relevant command is update. F -tests for
nested models may simply be performed as follows:
m1.lm<-lm(y∼x variables)

m2.lm<-update(a.lm, ∼. -x variables to be deleted)

anova(m1.lm, m2.lm, test="F")
Note the syntax: to delete a term, use update and

, ∼ . - “comma tilde dot minus”.
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Akaike Information Criterion (AIC). If there are p parameters in the model,

AIC := −2log-likelihood + 2(p + 1)

(p parameters, plus one for σ2, the unknown variance). We then choose between
competing models by trying to minimise AIC. The AIC is a penalised log-
likelihood, penalised by the number of parameters (H. Akaike (1927–) in 1974).

The situation is like that of polynomial regression (§4.1). Adding more
parameters gives a better fit. But, the Principle of Parsimony tells us to use as
few parameters as possible. AIC gives a sensible compromise between

bad fit, over-simplification, too few parameters, and
good fit, over-interpretation, too many parameters.

Step. One can test the various sub-models nested within the full model au-
tomatically in S-Plus, by using the command step. This uses AIC to drop
non-significant terms (Principle of Parsimony: the fewer terms, the better).
The idea is to start with the full model, and end up with the minimal adequate
model.

Unfortunately, it matters in what order the regressors or factors are speci-
fied in our current model. This is particularly true in ill-conditioned situations
(Chapter 7), where the problem is numerically unstable. This is usually caused
by multicollinearity (some regressors being nearly linear combinations of oth-
ers). We will discuss multicollinearity and associated problems in more detail in
Chapter 7. F -tests for nested models and stepwise methods for model selection
are further discussed in Chapter 6.

5.3 Examples

Example 5.8 (Photoperiod example revisited)

Here we suppose that the data in Exercises 2.4 and 2.9 can be laid out as
in Table 5.1 – we assume we have quantitative rather than purely qualita-
tive information about the length of time that plants are exposed to light. We
demonstrate that Analysis of Covariance can lead to a flexible class of mod-
els by combining methods from earlier chapters on regression and Analysis of
Variance.

The simplest model that we consider is Growth∼Genotype+Photoperiod.
This model has a different intercept for each different genotype. However, length
of exposure to light is assumed to have the same effect on each plant irrespective
of genotype. We can test for the significance of each term using an Analysis of
Variance formulation analogous to the construction in Chapter 2. The sums-of-
squares calculations are as follows. The total sum of squares and the genotype
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Photoperiod 8h 12h 16h 24h
Genotype A 2 3 3 4
Genotype B 3 4 5 6
Genotype C 1 2 1 2
Genotype D 1 1 2 2
Genotype E 2 2 2 2
Genotype F 1 1 2 3

Table 5.1 Data for Example 5.8

sum of squares are calculated in exact accordance with the earlier analysis-of-
variance calculations in Chapter 2:

SS = 175 − (1/24)572 = 39.625,

SSG = (1/4)(122 + 182 + 62 + 62 + 82 + 72) − (1/24)572 = 27.875.

As before we have 23 total degrees of freedom and 5 degrees of freedom for
genotype. In Chapter 1 we saw that the sum of squares explained by regression
is given by

SSR :=
∑

i
(ŷi − y)2 =

S2
xy

Sxx
.

Since photoperiod is now assumed to be a quantitative variable, we have only
one degree of freedom in the ANOVA table. The sum-of-squares calculation for
photoperiod becomes 772/840 = 7.058. As before, the residual sum of squares
is calculated by subtraction.
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In the notation of Theorem 5.3 we find that
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Using γ̂A = (ZT RZ)−1ZT RY gives

γ̂A =

⎛

⎜
⎜
⎜
⎜
⎝

1.5
−1.5
−1.5
−1

−1.25

⎞

⎟
⎟
⎟
⎟
⎠

.

The regression sum of squares for genotype can then be calculated as
γ̂AZT RY =27.875 and we obtain, by subtraction, the resulting ANOVA table
in Table 5.2. All terms for photoperiod and genotype are significant and we
appear to need a different intercept term for each genotype.

A second model that we consider is Photoperiod∼Genotype*Photoperiod.
This model is a more complicated extension of the first, allowing for the pos-
sibility of different intercepts and different slopes, dependent on genotype. As
before, the degrees of freedom multiply to give five degrees of freedom for this
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Source df Sum of Squares Mean Square F p

Photoperiod 1 7.058 7.058 25.576 0.000
Genotype 5 27.875 5.575 20.201 0.000
Residual 17 4.692 0.276

Total 23 39.625

Table 5.2 ANOVA table for different intercepts model

interaction term. The sum-of-squares term of the Genotype:Photoperiod inter-
action term can be calculated as follows. In the notation of Theorem 5.3, we
now have

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
12 0 0 0 0
16 0 0 0 0
24 0 0 0 0
0 8 0 0 0
0 12 0 0 0
0 16 0 0 0
0 24 0 0 0
0 0 8 0 0
0 0 12 0 0
0 0 16 0 0
0 0 24 0 0
0 0 0 8 0
0 0 0 12 0
0 0 0 16 0
0 0 0 24 0
0 0 0 0 8
0 0 0 0 12
0 0 0 0 16
0 0 0 0 24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 8 0 0 0 0 0
1 12 0 0 0 0 0
1 16 0 0 0 0 0
1 24 0 0 0 0 0
1 8 1 0 0 0 0
1 12 1 0 0 0 0
1 16 1 0 0 0 0
1 24 1 0 0 0 0
1 8 0 1 0 0 0
1 12 0 1 0 0 0
1 16 0 1 0 0 0
1 24 0 1 0 0 0
1 8 0 0 1 0 0
1 12 0 0 1 0 0
1 16 0 0 1 0 0
1 24 0 0 1 0 0
1 8 0 0 0 1 0
1 12 0 0 0 1 0
1 16 0 0 0 1 0
1 24 0 0 0 1 0
1 8 0 0 0 0 1
1 12 0 0 0 0 1
1 16 0 0 0 0 1
1 24 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



144 5. Adding additional covariates and the Analysis of Covariance

γ̂A = (ZT RZ)−1ZT RY gives

γ̂A =

⎛

⎜
⎜
⎜
⎜
⎝

0.071
−0.071
−0.043
−0.114
0.021

⎞

⎟
⎟
⎟
⎟
⎠

.

The sum of squares for the Genotype:Photoperiod term (Gen:Phot.) can then
be calculated as γ̂AZT RY = 3.149 and we obtain the ANOVA table shown in
Table 5.3. We see that the Genotype:Photoperiod interaction term is significant
and the model with different slopes and different intercepts offers an improve-
ment over the simpler model with just one slope but different intercepts.

Source df Sum of Squares Mean Square F p

Photoperiod 1 7.058 7.058 54.898 0.000
Genotype 5 5.575 43.361 0.000
Gen:Phot. 5 3.149 0.630 4.898 0.011

(Different slopes)
Residual 12 1.543 0.129

Total 23 39.625

Table 5.3 ANOVA table for model with different intercepts and different
slopes

Example 5.9 (Exercise 1.6 revisited)

We saw a covert Analysis of Covariance example as early as the Exercises at
the end of Chapter 1, in the half-marathon times in Table 1.2. The first model
we consider is a model with different intercepts. The sum of squares for age is
114.7952/747.5 = 17.629. Fitting the model suggested in part (ii) of Exercise
1.6 gives a residual sum of squares of 43.679. The total sum of squares is
SS = 136.114. Substituting gives a sum of squares of 136.114−43.679−17.629 =
74.805 for club status. This result can alternatively be obtained as follows. We
have that

Z = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T,

X =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 43 44 46 48 49 50 51 57 59 60 61 62 63

)T

.

We have that γ̂A = (ZT RZ)−1ZT RY = −7.673 and the sum of squares for
club status can be calculated as γ̂A(ZT RY ) = (−7.673)(−9.749) = 74.805.
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The ANOVA table obtained is shown in Table 5.4. The term for club status is
significant, but the age term is borderline insignificant. The calculations for the
model with two different slopes according to club status is left as an exercise
(see Exercise 5.1).

Source df Sum of squares Mean Square F p

Age 1 17.629 17.629 4.440 0.059
Club membership 1 74.805 74.805 18.839 0.001

Residual 11 43.679 3.971
Total 13 136.114

Table 5.4 ANOVA table for different intercepts model

EXERCISES

5.1. Produce the ANOVA table for the model with different slopes for
the data in Example 5.9.

5.2. In the notation of Theorem 5.3 show that

var
(
δ̂A

)
=
(

(XT X)−1 − LMLT +LM

−MLT M

)

,

where M = (ZT RZ)−1.

5.3. Suppose Y1, . . ., Yn are iid N(α, σ2).
(i) Find the least-squares estimate of α.
(ii) Use Theorem 5.3 to estimate the augmented model

Yi = α + βxi + εi,

and verify the formulae for the estimates of the simple linear regres-
sion model in Chapter 1.

5.4. Repeat the analysis in Chapter 5.3 in S-Plus/R� using the com-
mands update and anova.

5.5. The data in Table 5.5 come from an experiment measuring enzymatic
reaction rates for treated (State=1) and untreated (State=0) cells
exposed to different concentrations of substrate. Fit an Analysis of
Covariance model to this data and interpret your findings.
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State=0 State=1
Concentration Rate Concentration Rate

0.02 67 0.02 76
0.02 51 0.02 47
0.06 84 0.06 97
0.06 86 0.06 107
0.11 98 0.11 123
0.11 115 0.11 139
0.22 131 0.22 159
0.22 124 0.22 152
0.56 144 0.56 191
0.56 158 0.56 201
1.10 160 1.10 207

1.10 200

Table 5.5 Data for Exercise 5.5

5.6. ANCOVA on the log-scale. Plot the data in Exercise 5.5. Does the as-
sumption of a linear relationship appear reasonable? Log-transform
both the independent variable and the response and try again. (This
suggests a power-law relationship; these are extremely prevalent in
the physical sciences.) Fit an Analysis of Covariance model and write
out your final fitted model for the experimental rate of reaction.

5.7. The data in Table 5.6 is telephone usage (in 1000s) in various parts
of the world. Fit an Analysis of Covariance model to the logged data,
with time as an explanatory variable, using a different intercept term
for each region. Test this model against the model with a different
intercept and a different slope for each country.

N. Am. Europe Asia S. Am. Oceania Africa Mid Am.
51 45939 21574 2876 1815 1646 89 555
56 60423 29990 4708 2568 2366 1411 733
57 64721 32510 5230 2695 2526 1546 773
58 68484 35218 6662 2845 2691 1663 836
59 71799 37598 6856 3000 2868 1769 911
60 76036 40341 8220 3145 3054 1905 1008
61 79831 43173 9053 3338 3224 2005 1076

Table 5.6 Data for Exercise 5.7
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5.8. Quadratic Analysis of Covariance model. Suppose we have one ex-
planatory variable X but that the data can also be split into two
categories as denoted by a dummy variable Z. Write

Y = β0 + β1X + β2X
2 + γ0Z + γ1ZX + γ2ZX2 + ε.

In addition to the possibility of different intercepts and different
slopes this model allows for additional curvature, which can take
different forms in each category. Suppose the first k observations are
from the first category (Z = 0) and the remaining n − k are from
the second category (Z = 1).
(i) Write down the X matrix for this model.
Suggest appropriate F -tests to test:
(ii) The need for both quadratic terms,
(iii) The hypothesis γ2 = 0 assuming β2 �=0.

5.9. Probability plots/normal probability plots. Given an ordered sample
xi, an approximate test of normality can be defined by equating the
theoretical and empirical cumulative distribution functions (CDFs):

i

n
= Φ

(
xi − μ

σ

)

,

where Φ(·) is the standard normal CDF. In practice, to avoid bound-
ary effects, the approximate relation

i − 1
2

n
= Φ

(
xi − μ

σ

)

is often used (a ‘continuity correction’; cf. Sheppard’s correction,
Kendall and Stuart (1977) §3.18–26).
(i) Use this approximate relation to derive a linear relationship and
suggest a suitable graphical test of normality.
(ii) The following data represent a simulated sample of size 20 from
N(0, 1). Do these values seem reasonable using the above?

−2.501, −1.602, −1.178, −0.797, −0.698, −0.428, −0.156, −0.076,
−0.032, 0.214, 0.290, 0.389, 0.469, 0.507, 0.644, 0.697, 0.820, 1.056,
1.145, 2.744

[Hint: In S-Plus/R� you may find the commands ppoints and
qqnorm helpful.]
(iii) A random variable on [0, L] has a power-law distribution if it

has probability density f(x) = axb. Find the value of a and derive
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an approximate goodness-of-fit test for this distribution by equating
theoretical and empirical CDFs.

5.10. Segmented/piecewise linear models. Suppose we have the following
data:

x = (1, 2, 3, 4, 5, 6, 7, 8, 9),

y = (1.8, 4.3, 5.6, 8.2, 9.1, 10.7, 11.5, 12.2, 14.0).

Suppose it is known that a change-point occurs at x = 5, so that
observations 1–4 lie on one straight line and observations 5–9 lie on
another.
(i) Using dummy variables express this model as a linear model.
Write down the X matrix. Fit this model and interpret the fitted
parameters.
(ii) Assume that the location of the change-point is unknown and
can occur at each of x = {4, 5, 6, 7}. Which choice of change-point
offers the best fit to data?
(iii) Show that for a linear regression model the maximised likeli-
hood function can be written as ∝ SSE. Hence, show that AIC is
equivalent to the penalty function

n ln(SSE) + 2p.

Hence, compare the best fitting change-point model with linear and
quadratic regression models with no change-point.



6
Linear Hypotheses

6.1 Minimisation Under Constraints

We have seen several examples of hypotheses on models encountered so far.
For example, in dealing with polynomial regression §4.1 we met, when dealing
with a polynomial model of degree k, the hypothesis that the degree was at
most k − 1 (that is, that the leading coefficient was zero). In Chapter 5, we
encountered nested models, for example two general lines, including two parallel
lines. We then met the hypothesis that the slopes were in fact equal (and so
the lines were parallel). We can also conduct a statistical check of structural
constraints (for instance, that the angles of a triangle sum to two right-angles –
see Exercise 6.5).

We thus need to formulate a general framework for hypotheses of this kind,
and for testing them. Since the whole thrust of the subject of regression is
linearity, it is to be expected that our attention focuses on linear hypotheses.

The important quantities are the parameters βi, i = 1, . . . , p. Thus one
expects to be testing hypotheses which impose linear constraints on these pa-
rameters. We shall be able to test k such constraints, where k ≤ p. Assembling
these into matrix form, we shall test a linear hypothesis (with respect to the
parameters) of the matrix form

Bβ = c. (hyp)

Here B is a k×p matrix, β is the p×1 vector of parameters, and c is a k×1 vector
of constants. We assume that matrix B has full rank: if not, there are linear

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 149
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 6,
c© Springer-Verlag London Limited 2010
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dependencies between rows of B; we then avoid redundancy by eliminating
dependent rows, until remaining rows are linearly independent and B has full
rank. Since k ≤ p, we thus have that B has rank k.

We now seek to minimise the total sum of squares SS, with respect to
variation of the parameters β, subject to the constraint (hyp). Now by (SSD)
of §3.4,

SS = SSR + SSE.

Here SSE is a statistic, and can be calculated from the data y; it does not
involve the unknown parameters β. Thus our task is actually to

minimise SSR = (β̂ − β)T C(β̂ − β) under Bβ = c.

This constrained minimisation problem is solved by introducing Lagrange mul-
tipliers, λ1, . . . , λk, one for each component of the constraint equation (hyp).
We solve instead the unconstrained mimimisation problem

min
1
2
SSR + λT (Bβ − c),

where λ is the k-vector with ith component λi. Readers unfamiliar with
Lagrange multipliers are advised to take the method on trust for the moment:
we will soon produce our minimising value, and demonstrate that it does in-
deed achieve the minimum – or see e.g. Dineen (2001), Ch. 3 or Ostaszewski
(1990), §15.6. (See also Exercises 6.4–6.6.) That is, we solve

min
1
2

∑∑p

i,j=1
cij

(
β̂i − βi

)(
β̂j − βj

)
+

∑k

i=1
λj

(∑p

j=1
bijβj − ci

)
.

For each r = 1, . . . , k, we differentiate partially with respect to βr and equate
the result to zero. The double sum gives two terms, one with i = r and one
with j = r; as C = (cij) is symmetric, we obtain

−
∑

j
cjr

(
β̂j − βj

)
+

∑

i
λibir = 0.

The terms above are the rth elements of the vectors −C(β̂ − β) and BT λ. So
we may write this system of equations in matrix form as

BT λ = C
(
β̂ − β

)
. (a)

Now C is positive definite, so C−1 exists. Pre-multiply by BC−1 (B is k × p,
C−1 is p × p):

BC−1BT λ = B
(
β̂ − β

)
= Bβ̂ − c,

by (hyp). Since C−1 is positive definite (p × p) and B is full rank (k × p),
BC−1BT is positive definite (k × k). So we may solve for λ, obtaining

λ =
(
BC−1BT

)−1
(Bβ̂ − c). (b)
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We may now solve (a) and (b) for β, obtaining

β = β̂ − C−1BT
(
BC−1BT

)−1
(
Bβ̂ − c

)
.

This is the required minimising value under (hyp), which we write as β†:

β† = β̂ − C−1BT
(
BC−1BT

)−1
(
Bβ̂ − c

)
. (c)

In SSR = (β̂ − β)T C(β̂ − β), replace β̂ − β by (β̂ − β†) + (β† − β). This gives
two squared terms, and a cross term,

2(β† − β)T C(β̂ − β†),

which by (a) is
2(β† − β)T Bλ.

But Bβ = c and Bβ† = c, by (hyp). So B(β† − β) = 0, (β† − β)T B = 0, and
the cross term is zero. So

SSR = (β̂ − β)T C(β̂ − β) = (β̂ − β†)T C(β̂ − β†) + (β† − β)T C(β† − β). (d)

The second term on the right is non-negative, and is zero only for β = β†,
giving

Theorem 6.1

Under the linear constraint (hyp), the value

β† = β̂ − C−1BT (BC−1BT )−1(Bβ̂ − c)

is the unique minimising value of the quadratic form SSR in β.
(i) The unique minimum of SS under (hyp) is

SS∗ = SSR + (β̂ − β†)T C(β̂ − β†).

Multiplying (c) by B confirms that Bβ† = c – that is, that β† does satisfy
(hyp). Now (d) shows directly that β† is indeed the minimising value of SSR

and so of SS. Thus those unfamiliar with Lagrange multipliers may see directly
from (d) that the result of the theorem is true.

Proposition 6.2

E(SS∗) = (n − p + k)σ2.
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Proof

The matrix B is k × p (k ≤ p), and has full rank k. So some k × k sub–matrix
of B is non-singular. We can if necessary relabel columns so that the first k

columns form this non-singular k× k sub–matrix. We can then solve the linear
system of equations

Bβ = c

to find β1, . . . , βk – in terms of the remaining parameters βk+1, . . . , βk+p. We
can then express SS as a function of these p − k parameters, and solve by
ordinary least squares. This is then unconstrained least squares with p − k

parameters. We can then proceed as in Chapter 3 but with p− k in place of p,
obtaining E(SS∗) = (n − p + k)σ2.

6.2 Sum-of-Squares Decomposition and F-Test

Definition 6.3

The sum of squares for the linear hypothesis, SSH , is the difference between
the constrained minimum SS∗ and the unconstrained minimum SSE of SS.
Thus

SSH := SS∗ − SSE = (β̂ − β†)T C(β̂ − β†).

We proceed to find its distribution. As usual, we reduce the distribution theory
to matrix algebra, using symmetric projections.

Now
β̂ − β† = C−1BT

(
BC−1BT

)−1
(
Bβ̂ − c

)
,

by (i) of the Theorem above. So

Bβ̂ − c = B
(
β̂ − β

)
+ (Bβ − c) = B

(
β̂ − β

)
,

under the constraint (hyp). But

β̂ − β = C−1AT y − β

= C−1AT y − C−1AT Aβ

= C−1AT (y − Aβ).

Combining,

β̂ − β† = C−1BT
(
BC−1BT

)−1
BC−1AT (y − Aβ),
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so we see that
(
β̂ − β†

)T

C = (y − Aβ)T AC−1BT
(
BC−1BT

)
BC−1C

= (y − Aβ)T AC−1BT
(
BC−1BT

)
B.

Substituting these two expressions into the definition of SSH above, we see
that SSH is

(y − Aβ)T AC−1BT
(
BC−1BT

)−1
B.C−1BT

(
BC−1BT

)−1
BC−1AT (y − Aβ),

which simplifies, giving

SSH = (y − Aβ)T D(y − Aβ),

say, where
D := AC−1BT

(
BC−1BT

)−1
BC−1AT .

Now matrix D is symmetric, and

D2 = AC−1BT
(
BC−1BT

)−1
BC−1AT .AC−1BT

(
BC−1BT

)−1
BC−1AT

which simplifies to

D2 = AC−1BT
(
BC−1BT

)−1
BC−1AT

= D,

so D is also idempotent. So its rank is its trace, and D is a symmetric projection.
By the definition of SS∗, we have the sum-of-squares decomposition

SS∗ := SSE + SSH.

Take expectations:
E(SS∗) = E(SSE) + E(SSH).

But
E(SSE) = (n − p)σ2,

by §3.4, and
E(SS∗) = (n − p + k)σ2,

by Proposition 6.2 above. Combining,

E(SSH) = kσ2.

Since SSH is a quadratic form in normal variates with matrix D, a symmetric
projection, this shows as in §3.5.1, that D has rank k:

rank(D) = trace(D) = k,

the number of (scalar) constraints imposed by the (matrix) constraint (hyp).
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Theorem 6.4 (Sum of Squares for Hypothesis, SSH)

(i) In the sum-of-squares decomposition

SS∗ := SSE + SSH,

the terms on the right are independent.

(ii) The three quadratic forms are chi-square distributed, with

SS∗/σ2 ∼ χ2(n− p + k), SSE/σ2 ∼ χ2(n− p), SSH/σ2 ∼ χ2(k).

Proof

Since the ranks n− p and k of the matrices of the quadratic forms on the right
sum to the rank n−p+k of that on the left, and we already know that quadratic
forms in normal variates are chi-square distributed, the independence follows
from Chi-Square Decomposition, §3.5.

We are now ready to formulate a test of our linear hypothesis (hyp). This
use of Fisher’s F distribution to test a general linear hypothesis is due to S.
Ko�lodziejcyzk (d. 1939) in 1935.

Theorem 6.5 (Ko�lodziejcyzk’s Theorem)

We can test our linear hypothesis (hyp) by using the F -statistic

F :=
SSH/k

SSE/(n − p)
,

with large values of F evidence against (hyp). Thus at significance level α, we
use critical region

F > Fα(k, n − p),

the upper α-point of the Fisher F -distribution F (k, n − p).

Proof

By the result above and the definition of the Fisher F -distribution as the ratio
of independent chi-square variates divided by their degrees of freedom, our
F -statistic has distribution F (k, n− p). It remains to show that large values of
F are evidence against (hyp) – that is, that a one-tailed test is appropriate.

Write
w = Bβ − c.
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Thus w = 0 iff the linear hypothesis (hyp) is true; w is non-random, so constant
(though unknown, as it involves the unknown parameters β). Now

Bβ̂ − c = B
(
β̂ − β

)
+ (Bβ − c) = B

(
β̂ − β

)
+ w.

Here β̂ − β = C−1AT (y − Aβ) has mean zero and covariance matrix σ2C−1

(Proposition 4.4). So Bβ̂−c and B(β̂−β) have covariance matrix σ2BC−1BT ;
B(β̂ − β) has mean zero (as β̂∗ is unbiased), and Bβ − c has mean w. Now by
Theorem 6.1,

SSH = (β̂ − β†)T C(β̂ − β†)

= [C−1BT
(
BC−1BT

)−1
(Bβ̂ − c)]T C[C−1BT (BC−1BT )−1(Bβ̂ − c)].

This is a quadratic form in Bβ̂ − c (mean w, covariance matrix σ2BC−1BT )
with matrix

(BC−1BT )−1.BC−1.C.C−1BT (BC−1BT )−1 = (BC−1BT )−1.

So by the Trace Formula (Prop. 3.22),

E(SSH) = trace[(BC−1BT )−1.σ2BC−1BT ] + wT (BC−1BT )−1w.

The trace term is σ2trace(Ik) (B is k × p, C−1 is p × p, BT is p × k), or σ2k,
giving

E(SSH) = σ2k + wT (BC−1BT )−1w.

Since C is positive definite, so is C−1, and as B has full rank, so is (BC−1BT )−1.
The second term on the right is thus non-negative, and positive unless w = 0;
that is, unless the linear hypothesis (hyp) is true. Thus large values of E(SSH),
so of SSH , so of F := (SSH/k)/(SSE/(n−p)), are associated with violation of
(hyp). That is, a one-tailed test, rejecting (hyp) if F is too big, is appropriate.

Note 6.6

The argument above makes no mention of distribution theory. Thus it holds
also in the more general situation where we do not assume normally distributed
errors, only uncorrelated errors with the same variance. A one-tailed F -test is
indicated there too. However, the difficulty comes when choosing the critical
region – the cut-off level above which we will reject the null hypothesis – the lin-
ear hypothesis (hyp). With normal errors, we know that the F -statistic has the
F -distribution F (k, n− p), and we can find the cut-off level Fα(k, n− p) using
the significance level α and tables of the F -distribution. Without the assump-
tion of normal errors, we do not know the distribution of the F -statistic – so
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although we still know that large values are evidence against (hyp), we lack a
yardstick to tell us ‘how big is too big’. In practice, we would probably still
use tables of the F -distribution, ‘by default’. This raises questions of how close
to normality our error distribution is, and how sensitive to departures from
normality the distribution of the F -statistic is – that is, how robust our proce-
dure is against departures from normality. We leave such robustness questions
to the next chapter, but note in passing that Robust Statistics is an impor-
tant subject in its own right, on which many books have been written; see e.g.
Huber (1981).

Note 6.7

To implement this procedure, we need to proceed as follows.

(i) Perform the regression analysis in the ‘big’ model, Model 1 say, obtaining
our SSE, SSE1 say.

(ii) Perform the regression analysis in the ‘little’ model, Model 2 say, obtaining
similarly SSE2.

(iii) The big model gives a better fit than the little model; the difference in fit
is SSH := SSE2 − SSE1.

(iv) We normalise the difference in fit SSH by the number k of degrees of
freedom by which they differ, obtaining SSH/k.

(v) This is the numerator of our F -statistic. The denominator is SSE1 divided
by its df.

This procedure can easily be implemented by hand – it is after all little more
than two regression analyses. Being both so important and so straightforward, it
has been packaged, and is automated in most of the major statistical packages.

In S-Plus/R�, for example, this procedure is embedded in the software used
whenever we compare two nested models, and in particular in the automated
procedures update and step of §5.2. As we shall see in §6.3 the theory motivates
a host of sequential methods to automatically select from the range of possible
models.

Example 6.8 (Brownlee’s stack loss data)

This data set is famous in statistics for the number of times it has been analysed.
The data in Table 6.1 relate stack loss – a measure of inefficiency – to a series
of observations. Exploratory data analysis suggests close relationships between
Stack Loss and Air Flow and between Water Temperature and Stack Loss.
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We wish to test whether or not Acid Concentration can be removed from the
model. This becomes a test of the hypothesis α3 = 0 in the model

Y = α0 + α1X1 + α2X2 + α3X3 + ε.

Air Flow X1 Water Temp X2 Acid Conc. X3 Stack Loss Y

80 62 50 27 24 18 89 93 89 42 20 8
80 58 50 27 23 18 88 87 86 37 15 7
75 58 50 25 18 19 90 80 72 37 14 8
62 58 50 24 18 19 87 89 79 28 14 8
62 58 50 22 17 20 87 88 80 18 13 9
62 58 56 23 18 20 87 82 82 18 11 15
62 58 70 24 19 20 93 93 91 19 12 15

Table 6.1 Data for Example 6.8

Fitting the model with all three explanatory variables gives a residual sum
of squares of 178.83 on 17 df The model with acid concentration excluded has
a residual sum of squares of 188.795 on 16 df Our F -statistic becomes

F =
(

188.795− 178.83
1

) (
16

188.795

)

= 0.85.

Testing against F1,16 gives a p-value of 0.372. Thus, we accept the null hypoth-
esis and conclude that Acid Concentration can be excluded from the model.

6.3 Applications: Sequential Methods

6.3.1 Forward selection

We start with the model containing the constant term. We consider all the
explanatory variables in turn, choosing the variable for which SSH is largest.
The procedure is repeated for p = 2, 3, . . . , selecting at each stage the variable
not currently included in the model with largest F statistic. The procedure
terminates when either all variables are included in the model or the maximum
F value fails to exceed some threshold FIN .
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Example 6.9

We illustrate forward selection by returning to the data in Example 6.8.

Step 1
We compute SSE(Air Flow) = 319.116, SSE(Water Temperature) = 483.151,
SSE(Acid concentration) = 1738.442. Air flow is the candidate for entry into
the model. F = 104.201 against F1,19 to give p = 0.000 so air flow enters the
model.

Step 2
The computations give SSE(Air Flow+Water Temperature) = 188.795 and
SSE(Air Flow+Acid Concentration) = 309.1376. Thus, water temperature
becomes our candidate for entry into the model. We obtain that F = 12.425
and testing against F1,18 gives p = 0.002 so water temperature enters the model.

Step 3
The F -test of Example 6.8 shows that acid concentration does not enter the
model.

6.3.2 Backward selection

Backward selection is an alternative to forward selection. We start using the full
model using all p variables (recall p << n) and compute the F -statistic with
k = 1 for each of the p-variables in turn. We eliminate the variable having small-
est F -statistic from the model, provided F is less than some threshold FOUT .
The procedure is continued until either all the variables are excluded from the
model or the smallest F fails to become less than FOUT . When performing
forward or backward selection the thresholds FIN and FOUT may change as
the algorithms proceed. The most obvious approach is to choose an appropriate
formal significance level, e.g. p = 0.05, and set the thresholds according to the
critical values of the corresponding F -test.

Example 6.10

We illustrate backward selection by returning to the example.

Step 1
The F -test of Example 6.8 excludes acid concentration from the model.
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Step 2
The calculations show that SSE(Air Flow +Water Temperature) = 188.795,
SSE(Air Flow) = 319.116, SSE(Water Temperature) = 483.151. Thus water
temperature becomes our candidate for exclusion. The resulting F -test is the
same as in Step 2 of Example 6.9, and we see that no further terms can be
excluded from the model.

6.3.3 Stepwise regression

In forward selection, once a variable is included in the model it is not removed.
Similarly, in backward selection once a variable is excluded it is never reintro-
duced. The two algorithms may also give very different results when applied to
the same data set. Stepwise regression aims to resolve these issues by combining
forward selection and backward selection.

The algorithm starts with the simple model consisting solely of a constant
term. The first step is a forward selection stage, followed by a backward se-
lection step. The algorithm then alternates between forward and backward
selection steps until no further variables are introduced at the forward selec-
tion stage. It is shown in Seber and Lee (2003) Ch. 12 that if FOUT≤FIN then
the algorithm must eventually terminate.

Example 6.11 (Example 6.8 re-visited)

The forward selection steps see first Air Flow and then Water Temperature
enter the model. Example 6.10 then shows that neither of these variables
can be excluded at the backward selection phase. Example 6.8 then shows
that Acid Concentration cannot enter the model in the final forward selection
phase.

Note 6.12

Some additional discussion of stepwise methods can be found in Seber and
Lee (2003), Ch. 12. The S-Plus/R� command step uses a variant of the above
method based on AIC (§5.2.1), which works both with Linear Models (Chapters
1–7) and Generalised Linear Models (Chapter 8). The command step can also
be used to perform forward and backward selection by specifying direction.
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EXERCISES

6.1. Fit regression models to predict fuel consumption for the data set
shown in Table 6.2 using
(i) Forward selection
(ii) Backward selection
(iii) Stepwise regression.
T is a qualitative variable taking the value 1 specifying a manual
rather than an automatic gearbox. G denotes the number of gears,
C denotes the number of carburettors. RAR is the rear-axle ratio,
1/4M t is the time taken to complete a quarter of a mile circuit. Cyls.
gives the number of cylinders and Disp. is the car’s displacement.
(This is a classical data set extracted from the 1974 Motor Trend
US magazine, and available as part of the mtcars dataset in R�.)

6.2. Show that the first step in forward selection is equivalent to choosing
the variable most highly correlated with the response.

6.3. All-subsets regression.
(i) Suppose that we have p non-trivial explanatory variables and we
always include a constant term. Show that the number of possible
models to consider in all–subsets regression is 2p − 1.
(ii) How many possible models are suggested in Exercise 6.1?
(iii) Suppose it is feasible to fit no more than 100 regression models.
How large does p have to be in order for all-subsets regression to
become infeasible?

6.4. Lagrange multipliers method. Using the Lagrange multipliers method
maximise f(x, y) := xy subject to the constraint x2 +8y2 = 4. [Hint:
Set L = xy + λ(x2 + 8y2 − 4), where λ is the Lagrange multiplier,
and differentiate with respect to x and y. The resulting solution for λ

transforms the constrained problem into an unconstrained problem.]

6.5. Angles in a triangle. A surveyor measures three angles of a triangle,
α, β, γ (α + β + γ = π). Given one measurement of each of these
angles, find the constrained least–squares solution to this problem
by using Lagrange multipliers.

6.6. Angles in a cyclic quadrilateral. A surveyor measures four angles α,
β, γ, δ which are known to satisfy the constraint α+β +γ + δ = 2π.
If there is one observation for each of these angles Y1, Y2, Y3, Y4 say,
find the constrained least–squares solution to this problem using
Lagrange multipliers.
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Mpg Cyls. Disp. Hp RAR Weight 1/4M t v/s T. G. C.
21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
4.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Table 6.2 Data for Exercise 6.1
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6.7. Show that the regression treatment of one-way ANOVA and the F -
test for linear hypotheses returns the original F -test in Theorem 2.8.

6.8. Use a regression formulation and a suitable F -test to test the hy-
pothesis of no differences between treatments in Example 2.9.

6.9. Repeat Exercise 6.1, this time treating the 1/4M time as the depen-
dant variable.

6.10. Mixtures. Often chemical experiments involve mixtures of ingredi-
ents. This introduces a constraint into the problem, typically of the
form

x1 + x2 + . . . + xp = 1.

Suppose x1, . . . , xp are from a mixture experiment and satisfy the
above constraint.
(i) Reformulate the full main effects model

yi = β0 + β1x1,i + . . . + βpxp,i + εi,

using this constraint.
(ii) Suppose p = 3. The usual full second-order model is

y = β0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β12x1x2 + β13x1x3

+ β22x
2
2 + β23x2x3 + β33x

2
3 + ε.

Using your answer to (i) suggest a possible way to estimate this
model. What is the general solution to this problem for p �=3?

6.11. Testing linear hypotheses.
(i) Test for the need to use a quadratic model in order to describe
the following mixture experiment. x1 = (1, 0, 0, 0.5, 0.5, 0, 0.2, 0.3),
x2 = (0, 1, 0, 0.5, 0, 0.5, 0.6, 0.5), x3 = (0, 0, 1, 0, 0.5, 0.5, 0.2, 0.2),
y = (40.9, 25.5, 28.6, 31.1, 24.9, 29.1, 27.0, 28.4).
(ii) Suppose we have the following data x1 = (−1,−1, 0, 1, 1),

x2 = (−1, 0, 0, 0, 1), y = (7.2, 8.1, 9.8, 12.3, 12.9). Fit the model
y = β0 + β1x1 + β2x2 + ε. Test the hypothesis that β1 = 2β2. Ex-
plain how this constrained model may be fitted using simple linear
regression.



7
Model Checking and Transformation

of Data

7.1 Deviations from Standard Assumptions

In the above, we have assumed several things:

(i) the mean μ = Ey is a linear function of the regressors, or of the parameters;

(ii) the errors are additive;

(iii) the errors are independent;

(iv) the errors are normally distributed (Gaussian);

(v) the errors have equal variance.

Any or all of these assumptions may be inadequate. We turn now to a discussion
of how to assess the adequacy of our assumptions, and to what we can do when
they are inadequate.

Residual Plots. We saw in §3.6 that the residuals ei and fitted values y∗
i are

independent. So a residual plot of ei against y∗
i should not show any particular

pattern. If it does, then this suggests that the model is inadequate.

Scatter Plots. Always begin with EDA. With one regressor, we look at the
scatter plot of yi against xi. With more than one regressor, one can look at
all scatter plots of pairs of variables. In S-Plus, this can be done by using
the command pairs. For details, see for example the S-Plus Help facility, or
Crawley (2002), Ch. 24 (especially p. 432–3).

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 163
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c© Springer-Verlag London Limited 2010
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With two regressors, we have a data cloud in three dimensions. This is
a highly typical situation: real life is lived in three spatial dimensions, but we
represent it – on paper, or on computer screens – in two dimensions. The math-
ematics needed for this – the mathematics of computer graphics, or of virtual
reality – is based on projective geometry. In S-Plus, the command brush allows
one, in effect, to ‘pick up the data cloud and rotate it’ (see the S-Plus Help
facility, or Venables and Ripley (2002), for details). This may well reveal im-
portant structural features of our data. For example, if the data appears round
from one direction, but elliptical from another, this tells one something valu-
able about its distribution, and may suggest some appropriate transformation
of the data.

In higher dimensions, we lose the spatial intuition that comes naturally
to us in three dimensions. This is a pity, but is unavoidable: many practical
situations involve more than two regressors, and so more than three dimensions.
One can still use pairs to look at two-dimensional scatter plots, but there are
many more of these to look at, and combining these different pieces of visual
information is not easy.

In higher dimensions, the technique of Projection Pursuit gives a systematic
way of searching for adequate low-dimensional descriptions of the data.

Non-constant Variance. In Figure 7.2 the points ‘fan out’ towards the right,
suggesting that the variance increases with the mean. One possibility is to use
weighted regression (§4.7). Another possibility is to transform the data (see
below and Draper and Smith (1998) Ch. 13 for further details).

Unaccounted-for Structure. If there is visible structure present, e.g. curvature,
in the residual plot, this suggests that the model is not correct. We should
return to the original scatter plot of y against x and reinspect. One possibility
is to consider adding an extra term or terms to the model – for example, to try
a quadratic rather than a linear fit, etc.

Outliers. These are unusual observations that do not conform to the pattern
of the rest of the data. They are always worth checking (e.g., has the value been
entered correctly, has a digit been mis-transcribed, has a decimal point been
slipped, etc.?)

Such outliers may be unreliable, and distort the reliable data. If so, we can
trim the data to remove them. On the other hand, such points, if genuine, may
be highly informative.

The subject of how to get protection against such data contamination by
removing aberrant data points is called Robust Statistics (touched on in §5.3).
In particular, we can use Robust Regression.
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Example 7.1 (Median v Mean)

As a measure of location (or central tendency), using medians rather than
means gives us some protection against aberrant data points. Indeed, medians
can withstand gross data contamination – up to half the data wrong – without
failing completely (up to half the data can go off to infinity without dragging
the median off to infinity with them). We say that the median has breakdown
point 1/2, while the mean has breakdown point zero.

Detecting outliers via residual analysis. Residual analysis can be useful in
gauging the extent to which individual observations may be expected to devi-
ate from the underlying fitted model. As above, large residuals may point to
problems with the original data. Alternatively they may indicate that a better
model is needed, and suggest ways in which this may be achieved. The raw
residuals are given by

ei = yi − xiβ̂.

Scaled residuals are defined as

e∗i =
ei√
mii

,

where the mii are the diagonal elements of the matrix M , where M = I −
P = I − X(XT X)−1XT . Under this construction the scaled residuals should
now have equal variances (see Theorem 3.30). Scaled residuals can be further
modified to define standardised or internally studentised residuals defined as

si =
e∗i
σ̂

.

The distribution of the internally studentised residuals is approximately tn−p.
However, the result is not exact since the numerator and denominator are
not independent. There is one further type of residual commonly used: the
standardised deletion or externally studentised residual. Suppose we wish to test
the influence that observation i has on a fitted regression equation. Deleting
observation i and refitting we obtain a deletion residual

e−i = yi − xT
i β̂−i,

where β̂−i is the estimate obtained excluding observation i. Working as above
we can define a standardised deletion residual s−i. It can be shown, see e.g.
Seber and Lee (2003) Ch. 10, that

s−i =
si

√
n − p − 1

√
n − p − s2

i

.
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Further, if the model is correctly defined, these externally studentised residuals
have an exact tn−p−1 distribution. Residual plots can be generated automat-
ically in S-Plus/R� using the command plot. In R� this produces a plot of
residuals against fitted values, a normal probability plot of standardised resid-
uals (the relevant command here is qqnorm), a plot of the square root of the
absolute standardised residuals against fitted values, and a plot of standardised
residuals versus leverage with control limits indicating critical values for Cook’s
distances. (See below for further details.)

Influential Data Points. A point has high leverage if omitting it causes a
big change in the fit. For example, with one regressor x, an xi far from x̄

with an atypical yi will have high leverage. The leverage of observation i is
given by hii – the diagonal elements of the hat matrix H or projection ma-
trix P . In R� the leverages can be retrieved using the command hat. As
an illustration we consider an admittedly contrived example in Huber (1981)
and also cited in Atkinson (1985). Data consist of x = −4,−3,−2,−1, 0, 10,
y = 2.48, 0.73,−0.04,−1.44,−1.32, 0.00 and the effect of including or excluding
the apparent outlier at x = 10 has a dramatic impact upon the line of best fit
(see Figure 7.1).

x

y

Figure 7.1 Effect of influential observation on line of best fit
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Cook’s distance. The Cook’s distance Di of observation i combines leverage
and residuals – as can be seen from the definition (here H = (hij) = P )

Di =
s2

i hii

p(1 − hii)
.

Large values of Cook’s distance occur if an observation is both outlying (large
si) with high leverage (large hii). Plots of Cook’s distance can be obtained as
part of the output automatically generated in S-Plus/R� using the command
plot. It can be shown that

Di =

(
β̂ − β̂−i

)T

XT X
(
β̂ − β̂−i

)

pσ̂2
,

where β̂−i is the parameter estimate β̂ obtained when the ith observation is ex-
cluded. Thus Di does indeed serve as a measure of the influence of observation i.
It provides an appropriate measure of the ‘distance’ from β̂ to β̂−i.

Note 7.2

1. For further background on Cook’s distance and related matters, we refer
to Cook and Weisberg (1982).

2. This ‘leave one out’ idea is often useful in statistics. It leads to the method
of cross-validation (CV).

Bias and Mallows’s Cp statistic. Suppose we fit the model

y = X1β1 + ε.

This leads to the least-squares estimate β̂1 = (XT
1 X1)−1XT

1 y. If our postulated
model is correct then this estimate is unbiased (§3.3). Suppose however that
the true underlying relationship is

y = X1β1 + X2β2 + ε.

Our least-squares estimate β̂1 now has expected value β1+(XT
1 X1)−1XT

1 X2β2.
Omitting X2 leads to a bias of (XT

1 X1)−1XT
1 X2β2. Note that this is 0 if

XT
1 X2 = 0, the orthogonality relation we met in §5.1.1 on orthogonal pa-

rameters.
Mallows’s Cp statistic is defined as

Cp =
SSE

s2
− (n − 2p),
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where p is the number of model parameters and s2 is an estimate of σ2 obtained
from a subjective choice of full model. We consider sub-models of the full model.
If a model is approximately correct

E(Cp) ≈
(n − p)σ2

σ2
− (n − 2p) = p.

If the model is incorrectly specified it is assumed E(SSE) > σ2 and E(Cp) > p.
Models can be compared using this method by plotting Cp against p. Suitable
candidate models should lie close to the line Cp = p. Note, however that by
definition Cp = p for the full model.

Non-additive or non-Gaussian errors. These may be handled using Gener-
alised Linear Models (see Chapter 8). Generalised Linear Models can be fitted
in S-Plus and R� using the command glm. For background and details, see
McCullagh and Nelder (1989).

Correlated Errors. These are always very dangerous in Statistics! Independent
errors tend to cancel. This is the substance of the Law of Large Numbers (LLN),
that says

x̄ → Ex (n → ∞)

– sample means tend to population means as sample size increases. Similarly for
sample variances and other sample quantities. This is basically why Statistics
works. One does not even need to have independent errors: weakly dependent
errors (which may be defined precisely, in a variety of ways) exhibit similar
cancellation behaviour. By contrast, strongly dependent errors need not cancel.
Here, increasing the sample size merely replicates existing readings, and if these
are way off this does not help us (as in Note 1.3).

Correlated errors may have some special structure – e.g., in time or in space.
Accordingly, one would then have to use special methods to reflect this – Time
Series or Spatial Statistics; see Chapter 9. Correlated errors may be detected
using the Durbin–Watson test or, more crudely, using a runs test (see Draper
and Smith (1998), Ch. 7).

7.2 Transformation of Data

If the residual plot ‘funnels out’ one may try a transformation of data, such as
y �→ log y or y �→ √

y (see Figure 7.2).
If on the other hand the residual plot ‘funnels in’ one may instead try

y �→ y2, etc (see Figure 7.3).
Is there a general procedure? One such approach was provided in a famous

paper Box and Cox (1964). Box and Cox proposed a one-parameter family of
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Figure 7.2 Plot showing ‘funnelling out’ of residuals

power transformations that included a logarithmic transformation as a special
case. With λ as parameter, this is

y �→
{

(yλ − 1)/λ if λ �= 0,

log y if λ = 0.

Note that this is an indeterminate form at λ = 0, but since

yλ − 1
λ

=
eλ log y − 1

λ
,

d

dλ

(
eλ log y − 1) = log y.eλ log y = log y if λ = 0,

L’Hospital’s Rule gives

(yλ − 1)/λ → log y (λ → 0).

So we may define (yλ − 1)/λ as log y for λ = 0, to include λ = 0 with λ �= 0
above.

One may – indeed, should – proceed adaptively by allowing the data to
suggest which value of λ might be suitable. This is done in S-Plus by the
command boxcox.
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Figure 7.3 Plot showing ‘funnelling in’ of residuals

Example 7.3 (Timber Example)

The value of timber yielded by a tree is the response variable. This is measured
only when the tree is cut down and sawn up. To help the forestry worker decide
which trees to fell, the predictor variables used are girth (‘circumference’ –
though the tree trunks are not perfect circles) and height. These can be easily
measured without interfering with the tree – girth by use of a tape measure (at
some fixed height above the ground), height by use of a surveying instrument
and trigonometry.

Venables and Ripley (2002) contains a data library MASS, which includes
a data set timber:

attach(timber)

names(timber)

[1] “volume” “girth” “height”
boxcox(volume) ∼ (girth + height)
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Dimensional Analysis. The data-driven choice of Box–Cox parameter λ seems
to be close to 1/3. This is predictable on dimensional grounds: volume is in
cubic metres, girth and height in metres (or centimetres). It thus always pays
to be aware of units.

There is a whole subject of Dimensional Analysis devoted to such things
(see e.g. Focken (1953)). A background in Physics is valuable here.

7.3 Variance-Stabilising Transformations

In the exploratory data analysis (EDA), the scatter plot may suggest that
the variance is not constant throughout the range of values of the predictor
variable(s). But, the theory of the Linear Model assumes constant variance.
Where this standing assumption seems to be violated, we may seek a systematic
way to stabilise the variance – to make it constant (or roughly so), as the theory
requires.

If the response variable is y, we do this by seeking a suitable function g (suf-
ficiently smooth – say, twice continuously differentiable), and then transforming
our data by

y �→ g(y).

Suppose y has mean μ:
Ey = μ.

Taylor expand g(y) about y = μ:

g(y) = g(μ) + (y − μ)g′(μ) +
1
2
(y − μ)2g′′(μ) + . . .

Suppose the bulk of the response values y are fairly closely bunched around
the mean μ. Then, approximately, we can treat y − μ as small; then (y − μ)2

is negligible (at least to a first approximation, which is all we are attempting
here). Then

g(y) ∼ g(μ) + (y − μ)g′(μ).

Take expectations: as Ey = μ, the linear term goes out, giving Eg(y) ∼ g(μ).
So

g(y) − g(μ) ∼ g(y) − Eg(y) ∼ g′(μ)(y − μ).

Square both sides:

[g(y) − g(μ)]2 ∼ [g′(μ)]2(y − μ)2.

Take expectations: as Ey = μ and Eg(y) ∼ g(μ), this says

var(g(y)) ∼ [g′(μ)]2var(y).
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Regression. So if
E(yi|xi) = μi, var(yi|xi) = σ2

i ,

we use EDA to try to find some link between the means μi and the variances
σ2

i . Suppose we try σ2
i = H(μi), or

σ2 = H(μ).

Then by above,

var(g(y)) ∼ [g′(μ)]2σ2 = [g′(μ)]2H(μ).

We want constant variance, c2 say. So we want

[g′(μ)]2H(μ) = c2, g′(μ) =
c

√
H(μ)

, g(y) = c

∫
dy

√
H(y)

.

Note 7.4

The idea of variance-stabilising transformations (like so much else in Statistics!)
goes back to Fisher. He found the density of the sample correlation coefficient
r2 in the bivariate normal distribution – a complicated function involving the
population correlation coefficient ρ2, simplifying somewhat in the case ρ = 0
(see e.g. Kendall and Stuart (1977), §16.27, 28). But Fisher’s z transformation
of 1921 (Kendall and Stuart (1977), §16.33)

r = tanh z, z =
1
2

log
(

1 + r

1 − r

)

, ρ = tanh ζ, ζ =
1
2

log
(

1 + ρ

1 − ρ

)

gives z approximately normal, with variance almost independent of ρ:

z ∼ N(0, 1/(n− 1)).

Taylor’s Power Law. The following empirical law was proposed by R. L. Taylor
in 1961 (Taylor (1961)):
log variance against log mean is roughly linear with slope γ between 1 and 2.

Both these extreme cases can occur. An example of slope 1 is the Poisson
distribution, where the mean and the variance are the same. An example of
slope 2 occurs with a Gamma-distributed error structure, important in Gener-
alised Linear Models (Chapter 8).

With H(μ) = μγ above, this gives variance

v = σ2 = H(μ) = μγ .

Transform to

g(y) = c

∫
dy

√
H(y)

= c

∫
dy

y
1
2 γ

= c
(
y1− 1

2 γ − y
1− 1

2 γ
0

)
.
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This is of Box–Cox type, with

λ = 1 − 1
2
γ.

Taylor’s suggested range 1 ≤ γ ≤ 2 gives

0 ≤ 1 − 1
2
γ ≤ 1

2
.

Note that this range includes the logarithmic transformation (Box–Cox, λ =
0), and the cube–root transformation (λ = 1/3) in the timber example.
Partly for dimensional reasons as above, common choices for λ include λ =
−1/2, 0, 1/3, 1/2, (1), 3/2 (if λ = 1 we do not need to transform). An empiri-
cal choice of λ (e.g. by Box–Cox as above) close to one of these may suggest
choosing λ as this value, and/or a theoretical examination with dimensional
considerations in mind.

Delta Method. A similar method applies to reparametrisation. Suppose we
choose a parameter θ. If the true value is θ0 and the maximum-likelihood es-
timator is θ̂, then under suitable regularity conditions a central limit theorem
(CLT) will hold:

√
n

(
θ̂ − θ0

)
/σ → N(0, 1) (n → ∞).

Now suppose that one wishes to change parameter, and work instead with φ,
where

φ := g(θ).

Then the same method (Taylor expansion about the mean) enables one to
transfer this CLT for our estimate of θ to a CLT for our estimate of φ:

√
n

(
φ̂ − φ0

)
/ (g′ (θ0)σ) → N(0, 1) (n → ∞).

Example 7.5 (Variance and standard deviation)

It is convenient to be able to change at will from using variance σ2 as a param-
eter to using standard deviation σ. Mathematically the change is trivial, and it
is also trivial computationally (given a calculator). Using the delta-method, it
is statistically straightforward to transfer the results of a maximum-likelihood
estimation from one to the other.
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7.4 Multicollinearity

Recall the distribution theory of the bivariate normal distribution (§1.5). If we
are regressing y on x, but y is (exactly) a linear function of x, then ρ = ±1,
the bivariate normal density does not exist, and the two-dimensional setting
is wrong – the situation is really one-dimensional. Similar remarks apply for
the multivariate normal distribution (§4.3). When we assume the covariance
matrix Σ is non-singular, the density exists and is given by Edgeworth’s The-
orem; when Σ is singular, the density does not exist. The situation is similar
again in the context of Multiple Regression in Chapter 3. There, we assumed
that the design matrix A (n × p, with n >> p) has full rank p. A will have
defective rank (< p) if there are linear relationships between regressors. In all
these cases, we have a general situation which is non-degenerate, but which
contains a special situation which is degenerate. The right way to handle this
is to identify the degeneracy and its cause. By reformulating the problem in a
suitably lower dimension, we can change the situation which is degenerate in
the higher-dimensional setting into one which is non-degenerate if handled in
its natural dimension. To summarise: to escape degeneracy, one needs to iden-
tify the linear dependence relationship which causes it. One can then eliminate
dependent variables, begin again with only linearly independent variables, and
avoid degeneracy.

The problem remains that in Statistics we are handling data, and data are
uncertain. Not only do they contain sampling error, but having sampled our
data we have to round them (to the number of decimal places or significant
figures we – or the default option of our computer package – choose to work to).
We may well be in the general situation, where things are non-degenerate, and
there are no non-trivial linear dependence relations. Nevertheless, there may be
approximate linear dependence relations. If so, then rounding error may lead us
close to degeneracy (or even to it): our problem is then numerically unstable.
This phenomenon is known as multicollinearity.

Multiple Regression is inherently prone to problems of this kind. One reason
is that the more regressors we have, the more ways there are for some of them
to be at least approximately linearly dependent on others. This will then cause
the problems mentioned above. Our best defence against multicollinearity is
to be alert to the danger, and in particular to watch for possible approximate
linear dependence relations between regressors. If we can identify such, we have
made two important gains:

(i) we can avoid the numerical instability associated with multicollinearity,
and reduce the dimension and thus the computational complexity,

(ii) we have identified important structural information about the problem by
identifying an approximate link between regressors.
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The problem of multicollinearity in fact bedevils the whole subject of Multiple
Regression, and is surprisingly common. It is one reason why the subject is ‘an
art as well as a science’. It is also a reason why automated computer procedures
such as the S-Plus commands step and update produce different outcomes
depending on the order in which variables are declared in the model.

Example 7.6 (Concrete example)

The following example is due to Woods et al. (1932). It is a very good illustra-
tion of multicollinearity and how to handle it.

In a study of the production of concrete, the response variable Y is the
amount of heat (calories per gram) released while the concrete sets. There are
four regressors X1, . . . , X4 representing the percentages (by weight rounded
to the nearest integer) of the chemically relevant constituents from which the
concrete is made. The data are shown in Table 7.1 below.

n Y X1 X2 X3 X4

1 78.5 7 26 6 60
2 74.3 1 29 15 52
3 104.3 11 56 8 20
4 87.6 11 31 8 47
5 95.9 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 6
8 72.5 1 31 22 44
9 93.1 2 54 18 22
10 115.9 21 47 4 26
11 83.8 1 40 23 34
12 113.3 11 66 9 12
13 109.9 10 68 8 12

Table 7.1 Data for concrete example

Here the Xi are not exact percentages, due to rounding error and the pres-
ence of between 1% and 5% of other chemically relevant compounds. However,
X1, X2, X3, X4 are rounded percentages and so sum to near 100 (cf. the mixture
models of Exercise 6.10). So, strong (negative) correlations are anticipated, and
we expect that we will not need all of X1, . . . , X4 in our chosen model. In this
simple example we can fit models using all possible combinations of variables
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and the results are shown in Table 7.2. Here we cycle through, using as an
intuitive guide the proportion of the variability in the data explained by each
model as defined by the R2 statistic (see Chapter 3).

Model 100R2 Model 100R2 Model 100R2

X1 53.29 X1 X2 97.98 X1 X2 X3 98.32
X2 66.85 X1 X3 54.68 X1 X2 X4 98.32
X3 28.61 X1 X4 97.28 X1 X3 X4 98.2
X4 67.59 X2 X3 84.93 X2 X3 X4 97.33

X2 X4 68.18 X1 X2 X3 X4 98.32
X3 X4 93.69

Table 7.2 All-subsets regression for Example 7.6

The multicollinearity is well illustrated by the fact that omitting either X3

or X4 from the full model does not seem to have much of an effect. Further, the
models with just one term do not appear sufficient. Here the t-tests generated
as standard output in many computer software packages, in this case R�1 using
the summary.lm command, prove illuminating. When fitting the full model X1

X2 X3 X4 we obtain the output in Table 7.3 below:

Coefficient Estimate Standard Error t-value p-value
Intercept 58.683 68.501 0.857 0.417

X1 1.584 0.728 2.176 0.061
X2 0.552 0.708 0.780 0.458
X3 0.134 0.738 0.182 0.860
X4 -0.107 0.693 -0.154 0.882

Table 7.3 R output for Example 7.6

So despite the high value of R2, tests for individual model components in
the model are non-significant. This in itself suggests possible multicollinearity.
Looking at Table 7.2, model selection appears to come down to a choice between
the best two-term model X1 X2 and the best three-term models X1 X2 X3 and
X1 X2 X4. When testing X1 X2 X3 versus X1 X2 we get a t-statistic of 0.209
for X3 suggesting that X3 can be safely excluded from the model. A similar
analysis for the X1 X2 X4 gives a p-value of 0.211 suggesting that X4 can also
be safely omitted from the model. Thus, X1 X2 appears to be the best model
and the multicollinearity inherent in the problem suggests that a model half the
1 R�: A language and environment for statistical computing. c© 2009 R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.
R-project.org

http://www.R-project.org
http://www.R-project.org
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size of the full model will suffice. In larger problems one might suggest using
stepwise regression or backward selection starting with the full model, rather
than the all-subsets regression approach we considered here.

Regression Diagnostics. A regression analysis is likely to involve an iterative
process in which a range of plausible alternative models are examined and com-
pared, before our final model is chosen. This process of model checking involves,
in particular, looking at unusual or suspicious data points, deficiencies in model
fit, etc. This whole process of model examination and criticism is known as Re-
gression Diagnostics. For reasons of space, we must refer for background and
detail to one of the specialist monographs on the subject, e.g. Atkinson (1985),
Atkinson and Riani (2000).

EXERCISES

7.1. Revisit the concrete example using,
(i) stepwise selection starting with the full model,
(ii) backward selection starting with the full model,
(iii) forward selection from the null constant model.

7.2. Square root transformation for count data. Counts of rare events are
often thought to be approximately Poisson distributed. The trans-
formation

√
Y or

√
Y + 1, if some counts are small, is often thought

to be effective in modelling count data. The data in Table 7.4 give
a count of the number of poppy plants in oats.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation?
(ii) Interpret the model in (i).
(iii) Re-fit the model in (i-ii) using a square–root transformation.
How do your findings change?

Treatment A B C D E
Block 1 438 538 77 17 18
Block 2 442 422 61 31 26
Block 3 319 377 157 87 77
Block 4 380 315 52 16 20

Table 7.4 Data for Exercise 7.2
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7.3. Arc sine transformation for proportions. If we denote the empirical
proportions by p̂, we replace p̂ by introducing the transformation
y = sin−1(

√
p̂). In this angular scale proportions near zero or one

are spread out to increase their variance and make the assumption
of homogenous errors more realistic. (With small values of n < 50
the suggestion is to replace zero or one by 1

4n or 1 − 1
4n .) The data

in Table 7.5 give the percentage of unusable ears of corn.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation?
(ii) Interpret the model in (i).
(iii) Re-fit the model in (i–ii) using the suggested transformation.
How do your findings change?

Block 1 2 3 4 5 6
Treatment A 42.4 34.4 24.1 39.5 55.5 49.1
Treatment B 33.3 33.3 5.0 26.3 30.2 28.6
Treatment C 8.5 21.9 6.2 16.0 13.5 15.4
Treatment D 16.6 19.3 16.6 2.1 11.1 11.1

Table 7.5 Data for Exercise 7.3

7.4. The data in Table 7.6 give the numbers of four kinds of plankton
caught in different hauls.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation of
the response?
(ii) Calculate the mean and range (max(y)−min(y)) for each species
and repeat using the logged response. Comment.
(iii) Fit an Analysis of Variance model using both raw and logged
numbers, and interpret the results.

7.5. Repeat Exercise 7.4 using
(i) The square-root transformation of Exercise 7.2.
(ii) Taylor’s power law.

7.6. The delta method: Approximation formulae for moments of trans-
formed random variables. Suppose the random vector U satisfies
E(U) = μ, var(U) = ΣU , V = f(U) for some smooth function
f . Let Fij be the matrix of derivatives defined by

Fij(u) =
(

∂u

∂v

)

ij

=
(

∂f

∂v

)

ij

=
∂fi

∂vj
.
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Haul Type I Type II Type III Type IV
1 895 1520 43300 11000
2 540 1610 32800 8600
3 1020 1900 28800 8260
4 470 1350 34600 9830
5 428 980 27800 7600
6 620 1710 32800 9650
7 760 1930 28100 8900
8 537 1960 18900 6060
9 845 1840 31400 10200
10 1050 2410 39500 15500
11 387 1520 29000 9250
12 497 1685 22300 7900

Table 7.6 Data for Exercise 7.4

We wish to construct simple estimates for the mean and variance of
V . Set

V ≈ f(μ) + F (μ)(u − μ).

Taking expectations then gives

E(V ) ≈ f(μ).

(i) Show that ΣV ≈ F (μ)ΣUF (μ)T .
(ii) Let U∼Po(μ) and V =

√
U . Give approximate expressions for

the mean and variance of V .
(iii) Repeat (ii) for V = log(U + 1). What happens if μ >> 1?

7.7. Show, using the delta method, how you might obtain parameter
estimates and estimated standard errors for the power-law model
y = αxβ .

7.8. Analysis using graphics in S-Plus/R�. Re-examine the plots shown
in Figures 7.2 and 7.3. The R�-code which produced these plots is
shown below. What is the effect of the commands xaxt/yaxt="n"?
Use ?par to see other options. Experiment and produce your own
examples to show funnelling out and funnelling in of residuals.
Code for funnels out/in plot
y2<-(x2+rnorm(60, 0, 0.7))∧2/y2<-(1+x2+rnorm(60, 0,

0.35))∧0.5
a.lm<-lm(y2∼x2)
plot(y2-a.lm$resid, a.lm$resid, xaxt‘"n", yaxt="n",

ylab="Residual", xlab="Fitted value")
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7.9. For the simple linear model in Exercise 1.6, calculate leverage, Cook’s
distances, residuals, externally studentised residuals and internally
studentised residuals.

7.10. Revisit the simulated data example in Exercise 3.4 using techniques
introduced in this chapter.



8
Generalised Linear Models

8.1 Introduction

In previous chapters, we have studied the model

y = Aβ + ε,

where the mean Ey = Aβ depends linearly on the parameters β, the errors are
normal (Gaussian), and the errors are additive. We have also seen (Chapter 7)
that in some situations, a transformation of the problem may help to correct
some departure from our standard model assumptions. For example, in §7.3
on variance-stabilising transformations, we transformed our data from y to
some function g(y), to make the variance constant (at least approximately).
We did not there address the effect on the error structure of so doing. Of
course, g(y) = g(Aβ + ε) as above will not have an additive Gaussian error
structure any more, even approximately, in general.

The function of this chapter is to generalise linear models beyond our earlier
framework, so as to broaden our scope and address such questions. The material
is too advanced to allow a full treatment here, and we refer for background and
detail to the (numerous) references cited below, in particular to McCullagh and
Nelder (1989) and to Venables and Ripley (2002), Ch. 7.

We recall that in earlier chapters the Method of Least Squares and the
Method of Maximum Likelihood were equivalent. When we go beyond this
framework, this convenient feature is no longer present. We use the Method of
Maximum Likelihood (equivalent above to the Method of Least Squares, but no

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 181
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 8,
c© Springer-Verlag London Limited 2010
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longer so in general). This involves us in finding the maximum of the likelihood
L, or equivalently the log-likelihood � := log L, by solving the likelihood equation

�′ = 0.

Unfortunately, this equation will no longer have a solution in closed form.
Instead, we must proceed as we do when solving a transcendental (or even
algebraic) equation

f(x) = 0,

and proceed numerically. The standard procedure is to use an iterative method:
to begin with some starting value, x0 say, and improve it by finding some better
approximation x1 to the required root. This procedure can be iterated: to go
from a current approximation xn to a better approximation xn+1. The usual
method here is Newton–Raphson iteration (or the tangent method):

xn+1 := xn − f(xn)/f ′(xn).

This effectively replaces the graph of the function f near the point x = xn by its
tangent at xn. In the context of statistics, the derivative �′ of the log-likelihood
function is called the score function, s, and the use of iterative methods to solve
the likelihood equation is called Fisher’s method of scoring (see e.g. Kendall
and Stuart (1979), §18.21).

Implementation of such an iterative solution by hand is highly laborious,
and the standard cases have been programmed and implemented in statistical
packages. One consequence is that (at least at the undergraduate level relevant
here) in order to implement procedures involving Generalised Linear Models
(GLMs), one really needs a statistical package which includes them. The pack-
age GLIM�1 is designed with just this in mind (Aitkin et al. (1989), or Crawley
(1993)), and also GenStat�2 (McConway et al. (1999)). For S-Plus for GLMs,
we refer to Venables and Ripley (2002), Ch. 7, Crawley (2002), Ch. 27. Unfor-
tunately, the package Minitab� (admirably simple, and very useful for much
of the material of this book) does not include GLMs.

Generalised Linear Models, or GLMs, arise principally from the work of the
English statistician John A. Nelder (1924–2010); the term is due to Nelder and
Wedderburn in 1972; the standard work on the subject is McCullagh and Nelder
(1989). As noted above, GLMs may be implemented in GLIM� or GenStat�;
the relevant command in S-Plus/R� is glm, with the family of error distribu-
tions specified, as well as the regressors; see below for examples.

1 GLIM� is a registered trademark of The Royal Statistical Society.
2 GenStat� is a registered trademark of VSN International Limited, 5 The Water-

house, Waterhouse Street, Hemel Hempstead, HP1 1ES, UK.
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8.2 Definitions and examples

Just as with a linear model, we have regressors, or stimulus variables, x1, . . . , xp

say, and a response variable y, which depends on these via a linear predictor

η = β1x1 + . . . + βpxp,

where the βi are parameters. The mean μ = Ey depends on this linear predictor
η, but whereas in the linear case μ = η, we now allow μ to be some smooth
invertible function of η, and so also, η is a smooth invertible function of μ. We
write

μ = m(η), η = m−1(μ) = g(μ),

where the function g is called the link function – it links the linear predictor to
the mean. In the linear case, the link g is the identity; we shall see a range of
other standard links below.

To complete the specification of the model, we need the distribution of the
response variable y, not just its mean μ; that is, we need to specify the error
structure. We assume that each observation yi is independent and has a density
f of the form

exp
{

ωi(yiθi − b(θi))
φ

+ c(y, φ)
}

,

where the parameter θi depends on the linear predictor η, φ is a scale parameter
(which may or may not be known), the ωi are a sequence of known weights,
and b(.) and c(.) are functions. It is further assumed that

var(yi) =
φ

ωi
V (μi),

where V (·) is a variance function relating the variance of the yi to the mean
μi. It can be shown that in the notation above

E(yi) = b′(θi),

var(yi) =
φ

ωi
b′′(θi).

This functional form derives from the theory of exponential families, which
lies beyond the scope of this book. For a monograph treatment, see e.g. Brown
(1986). Suffice it here to say that the parametric families which have a fully sat-
isfactory inference theory are the exponential families. So the assumption above
is not arbitrary, but is underpinned by this theory, and GLMs are tractable be-
cause of it.

The case when
θ = η
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is particularly important. When it occurs, the link function is called canonical.
(See also Exercise 8.1).

Example 8.1 (Canonical forms)

1. Normal. Here f(y; θ, φ) is given by

1√
2πσ2

exp{−1
2
(y − μ)2/σ2} = exp{(yμ− μ2/2)/σ2 − 1

2
(y2/σ2 + log(2πσ2))}.

So θ = μ, the scale parameter is simply the variance σ2, and the link function
g is the identity function:

g(μ) = μ.

This of course merely embeds the general linear model, with normal error struc-
ture, into the generalised linear model as a special case, and was to be expected.
The normal distribution is the obvious choice – the ‘default option’ – for mea-
surement data on the whole line.
2. Poisson. Here the mean μ is the Poisson parameter λ, and f(k; λ) =
e−λλk/k!. Writing y for k to conform with the above,

f(y; λ) = exp{y log λ − λ − log y!}.

So θ = log λ. So the canonical link, when θ = η = log λ, is the logarithm:

η = log λ.

This explains the presence of the logarithm in §8.3 below on log-linear models.
The Poisson distribution is the default option for count data (on the non-
negative integers). Note also that in this case the scale parameter φ is simply
φ = 1.
3. Gamma. The gamma density Γ (λ, α) is defined, for parameters α, λ > 0, as

f(x) =
λα

Γ (α)
e−λxxα−1.

The mean is
μ = α/λ,

and as

f(x) = exp{−λx + (α − 1) log x + α log λ − log Γ (α)}

= exp
{

(−α)
x

μ
+ . . .

}

,

the canonical link is the inverse function:

η = 1/μ,
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and we can also read off that the scale parameter is given by

φ = 1/α.

The gamma density is the default option for measurement data on the positive
half-line. It is often used with the log-link

η = log μ

and we shall meet such examples below (see Exercises 8.7).

Other standard examples, included in S-Plus/R�, are the inverse Gaussian
family (Exercise 8.9), the binomial (whose special case the Bernoulli, for bi-
nary data, we discuss below in §8.3), and the logit, probit and complementary
log-log cases (see §8.3 also).

One other pleasant feature of the general linear (normal) case that does not
carry over to GLMs is the distribution theory – independent sums of squares,
chi-square distributed, leading to F -tests and Analysis of Variance. The dis-
tribution theory of GLMs is less simple and clear-cut. Instead of Analysis of
Variance, one has analysis of deviance. This gives one a means of assessing
model fit, and of comparing one model with another – and in particular, of
choosing between two or more nested models. For further background and de-
tail, we refer to McCullagh and Nelder (1989), Venables and Ripley (2002),
Ch. 7, but we outline the basic procedures in the following two subsections.

8.2.1 Statistical testing and model comparisons

The scaled deviance metric is a measure of the distance between the observed
yi and the fitted μ̂i of a given model, and is defined as

S(y, μ̂) = 2 (l(y; φ, y) − l(μ̂; φ, y)) ,

=
2
φ

∑

i
ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
,

where l denotes log-likelihood. We define the residual deviance or deviance
which is the scaled deviance multiplied by the scale parameter φ:

D(y, μ̂) = φS(y, μ̂) = 2
∑

i
ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
.

Both the scaled deviance and the residual deviance are important and enable
both statistical testing of hypotheses and model comparisons. (Note that the
scaled deviance retains the scale parameter φ, which is then eliminated from
the residual deviance by the above.)
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Example 8.2

In the case of the normal linear model, the residual deviance leads to the
residual sum of squares:

D(y, μ̂) = SSE =
∑

i
(yi − μ̂)2.

To see this we note that, written as a function of the μi, the log-likelihood
function is

l(μ|φ, y) =
1
2φ

∑

i
(yi − μi)2 + C,

where C is constant with respect to μ. We have that

D(μ̂|φ, y) = 2φ

[
−
∑

(yi − yi)2 +
∑

(yi − μ̂i)2

2φ

]

=
∑

(yi − μ̂i)2.

The residual deviance can also be calculated for a range of common probability
distributions (see Exercise 8.2).

Nested models. Nested models can be formally compared using generalised
likelihood ratio tests. Suppose Model 1 is η = Xβ and Model 2 is η = Xβ +Zγ

with rank(Z) = r. Model 1 has dimension p1 and Model 2 has dimension
p2 = p1 + r. The test statistic is

2(l2 − l1) = S(y; μ̂1) − S(y; μ̂2),

=
D(y; μ̂1) − D(y; μ̂2)

φ
.

If the scale parameter φ is known, then the asymptotic distribution of this test
statistic should be χ2

r. This likelihood ratio test also suggests an admittedly
rough measure of absolute fit by comparing the residual deviance to χ2

n−p, with
high values indicating lack of fit. If φ is unknown, one suggestion is to estimate
φ using Model 2 and then treat φ as known. Alternatively, it is often customary
to use the F -test

D(y; μ̂1) − D(y; μ̂2)
φ̂r

∼ Fr,n−p2 ,

by analogy with the theory of Chapter 6. However, this must be used with
caution in non-Gaussian cases. A skeleton analysis of deviance is outlined in
Table 8.1, and should proceed as follows:
(i) Test S(y; μ2) versus χ2

n−p−1 for an admittedly rough test of model accuracy
for model 2.
(ii) Test S(y; μ1) − S(y; μ2) versus χ2

r to test the hypothesis Z = 0.
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Source Scaled Deviance df
Model 2 after fitting Model 1 S(y; μ1)-S(y; μ2) r

Model 2 S(y; μ2) n − p1 − r

Model 1 S(y; μ1) n − p1

Table 8.1 Skeleton analysis of deviance

Usually more than two models would be compared in the same way. The
reader should also note that methods of model selection similar to those dis-
cussed in Chapter 6 – namely forward and backward selection and sequential
methods – also apply here.

t-tests. Approximate t-tests for individual parameters can be constructed
by comparing

T =
β̂j − βj

e.s.e(β̂j)

to tn−p where β̂j is the estimate of βj and e.s.e denotes the associated estimated
standard error. This is partly by analogy with the theory of the Gaussian
linear model but also as a way of treating a near-Gaussian situation more
robustly. Approximate inference can also be conducted using the delta method
of Exercise 7.6. Whilst useful in model simplification, tests based on analysis
of deviance are usually preferred when testing between different models. Non-
nested models may be compared using the following generalisation of AIC:

AIC(μ̂) = D(y; μ̂) + 2pφ̂,

where μ denotes the fitted values and p the number of parameters of a given
model.

8.2.2 Analysis of residuals

There are four types of residuals commonly encountered in Generalised Linear
Models and roughly analogous to the various types of residuals defined for the
general linear model in Chapter 7. The response or raw residuals are simply
given by

ei = yi − μ̂i.

The Pearson residuals are defined as

eP,i =
√

ωi
yi − μ̂i
√

V (μ̂i)
=
√

φ
yi − μ̂i
√

V̂ (yi)
,
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since var(yi) = (φ/ωi)V (μi) by assumption. This is simply (yi − μ̂i)/
√

V̂ (yi)
appropriately scaled so as to remove the dispersion parameter φ. A Pearson χ2

statistic can be defined as

χ2 = χ2(y, μ̂) =
∑

e2
P,i,

and can be shown to be asymptotically equivalent to the deviance D. Working
residuals are defined as

eW,i =
(yi − μ̂i)
dμi/dηi

,

and are derived as part of the iterative model fitting process. Deviance residuals
are defined as

eD,i = sgn(yi − μ̂i)2ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
,

where the sign function sgn (or signum) is defined by

sgn(x) =

⎧
⎨

⎩

−1 x < 0
0 x = 0
1 x > 0.

This definition ensures that
∑

e2
D,i = D. If φ is not equal to one, the residuals

may be multiplied by
√

φ or its estimate to produce scaled versions of these
residuals. Plots of residuals can be used in the usual way to check model ad-
equacy – testing for nonlinearity, outliers, autocorrelation, etc – by plotting
against individual covariates or against the μ̂i or the η̂i. However, in contrast
to the general linear model, a Normal probability plot of residuals is unlikely
to be helpful. Also, aspects of the data, e.g. Poisson data for small counts, may
cause naturally occurring patterns in the residuals which should not then be
interpreted as indicating model inadequacy.

8.2.3 Athletics times

Example 8.3

We give a further illustrative example of a gamma Generalised Linear Model
by returning to our discussion of athletics times. For distance races, speed
decreases with distance, and so the time t taken increases faster than the
distance d. Because there are no natural units here, of distance or time, and the
relationship between t and d is smooth, Fechner’s Law applies (Gustav Fechner
(1801–1887) in 1860), according to which the relationship should be a power
law:

t = adb
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(see e.g. Hand (2004), §5.6, where it is attributed to Stevens). Here a is pace,
or time per unit distance (traditionally reckoned in minutes and seconds per
mile, or per kilometre), and so is an indicator of the quality of the athlete,
while b is dimensionless (and is thought to be much the same for all ath-
letes – see Bingham and Rashid (2008) for background). This is an instance of
Buckingham’s Pi Theorem (Edgar Buckingham (1867–1940) in 1914), accord-
ing to which a physically meaningful relationship between n physical variables,
k of which are independent, can be expressed in terms of p = n− k dimension-
less quantities; here n = 3 (t, a, d), k = 2 (t, d), p = 1 (b).

Taking this relationship for the mean t = ET for the actual running time
T , one has

t = ET = adb, log(ET ) = log a + b log d = α + b log d,

say, giving a linear predictor (in (1, log d)) with coefficients α, b. This gives the
systematic part of the model; as η = log μ (with μ = ET the mean), the link
function is log. As time and distance are positive, we take the random part of
the model (or error law) as Gamma distributed:

T ∼ Γ (λ, μ).

An alternative would be to use an ordinary linear model with Gaussian errors,
as in Chapter 3:

log T = α + b log d + ε, ε ∼ N(0, σ2).

With age also present, one needs an age-dependent version of the above:
using c in place of a above,

ET = c(a)tb,

where in view of our earlier studies one uses a linear model for c(a):

Ec(a) = α1 + α2a.

The resulting compound model is of hierarchical type, as in Nelder, Lee and
Pawitan (2006). Here, an approximate solution is possible using the simpler
gamma Generalised Linear Model if instead we assume

log(ET ) = α1 + α2 log a + b logd.

In this case we can use a Gamma Generalised Linear Model with log-link. In
S-Plus/R� the relevant syntax required is

m1.glm<-glm(time∼log(age)+log(distance),family=Gamma(link="log"))
summary(m1.glm)
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The results obtained for the marathon/half-marathon data (Table 1.1,
Exercise 1.3) are shown in Table 8.2, and give similar results to those using
a log-transformation and a normal linear model in Example 3.37. As there, the
log(age) value of about 1/3 is consistent (for age∼60, ET∼180) with the Rule
of Thumb: expect to lose a minute a year on the marathon through ageing
alone.

Value Std. Error t value
Intercept 0.542 0.214 2.538
log(age) 0.334 0.051 6.512

log(distance) 1.017 0.015 67.198

Table 8.2 Regression results for Example 8.3

8.3 Binary models

Logits.
Suppose that we are dealing with a situation where the response y is success

or failure (or, life or death) or of zero-one, or Boolean, type. Then if

Ey = p,

p ∈ [0, 1], and in non-trivial situations, p ∈ (0, 1). Then the relevant distribution
is Bernoulli, with parameter p, B(p):

p = P (y = 1), q := 1 − p = P (Y = 0),

var(y) = pq = p(1 − p).

Interpreting p as the probability of success and q = 1− p as that of failure, the
odds on success are p/q = p/(1− p), and the log-odds, more natural from some
points of view, are

log
(

p

1 − p

)

.

Thinking of success or failure as survival or death in a medical context of
treatment for some disease, the log-odds for survival may depend on covariates:
age might well be relevant, so too might length of treatment, how early the
disease was diagnosed, treatment type, gender, blood group etc. The simplest
plausible model is to assume that the log-odds of survival depend on some
linear predictor η – a linear combination η =

∑
jajβj of parameters βj , just
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as before (cf. §9.5 below on survival analysis). With data y1, . . . , yn as before,
and writing

Eyi = pi (i = 1, . . . , n),

we need a double-suffix notation just as before, obtaining

log{pi/(1 − pi)} =
∑p

j=1
aijβj , (i = 1, . . . , n).

There are three salient features here:
(i) The function

g(p) = log{p/(1 − p)},

the link function, which links mean response p = Ey to the linear predictor.
(ii) The distributions (‘error structure’), which belong to the Bernoulli family
B(p), a special case of the binomial family B(n, p), under which

P (X = k) =
(

n

k

)

pk(1 − p)n−k (k = 0, 1, . . . , n).

(iii) The function V giving the variance in terms of the mean:

V (p) = p(1 − p),

called the variance function.
The model above is called the logit model (from log-odds), or logistic model

(as if η = log{p(1−p)}, p = eη/(1+ eη), the logistic function). Binary data are
very important, and have been studied at book length; see e.g. McCullagh and
Nelder (1989) Ch. 13, Cox and Snell (1989), and Collett (2003). The relevant
S-Plus/R� commands are of the form

glm(y ∼ ..., family = binomial)

We draw an illustrative example (as usual) from athletics times. The ‘time
to beat’ for a club runner of reasonable standard in the marathon is three
hours; let us interpret ‘success’ as breaking three hours. The sample version of
the expected frequency p of success is the observed frequency, the proportion
of successful runners. For a mass event (such as the London Marathon), which
we suppose for simplicity has reached a steady state in terms of visibility, pres-
tige etc., the systematic component of the observed variability in frequency of
success from year to year is governed principally by the weather conditions:
environmental factors such as temperature, humidity, wind and the like. At
too high a temperature, the body is prone to dehydration and heat-stroke; at
too low a temperature, the muscles cannot operate at peak efficiency. Perfor-
mance thus suffers on either side of the optimum temperature, and a quadratic
in temperature is suggested. On the other hand, humidity is simply bad: the
more humid the air is, the harder it is for sweat to evaporate – and so perform
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its function, of cooling the body (heat is lost through evaporation). In an en-
durance event in humid air, the body suffers doubly: from fluid loss, and rise
in core temperature. Thus a linear term in humidity is suggested.
Probits.

A very different way of producing a mean response in the interval (0, 1)
from a linear predictor is to apply the (standard) normal probability distribu-
tion function Φ. The model

p = Φ(α + βx)

(or some more complicated linear predictor) arises in bioassay, and is called a
probit model. Writing η =

∑
jβjxj for the linear predictor, the link function is

now
η = g(p) = Φ−1(p).

Complementary log-log link.
In dilution assay, the probability p of a tube containing bacteria is related

to the number x = 0, 1, 2, . . . of dilutions by

p = 1 − e−λx

for some parameter λ (the number of bacteria present is modelled by a Poisson
distribution with this parameter). The link function here is

η = g(p) = log(− log(1 − p)) = log λ + log x.

Example 8.4

The data in Table 8.3 show the number of insects killed when exposed to
different doses of insecticide.

Dose Number Number killed % killed
10.7 50 44 88
8.2 49 42 86
5.6 46 24 52
4.3 48 16 33
3.1 50 6 12
0.5 49 0 0

Table 8.3 Data for Example 8.4

We wish to model these data using a Generalised Linear Model. A sen-
sible starting point is to plot the empirical logits defined here as ηe,i =
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log(yi + 1/2) − log(1 − yi + 1/2), where the 1/2 guards against singularities
in the likelihood function if yi = 0 or yi = 1. Here, a plot of the ηe,i against
log(dose) appears roughly linear suggesting a logarithmic term in dose. The
model can be fitted in R� as follows. First, the count data needs to be stored
as two columns of successes and failures (the command cbind is helpful here).
The model is fitted with the following commands:

a.glm<-glm(data∼log(dose), family=binomial)

summary(a.glm)

This gives a residual deviance of 1.595 with 4 df The deviance of the null model
with only a constant term is 163.745 on 5 df Testing 1.595 against χ2

4 gives
a p-value of 0.810, so no evidence of lack of fit. The log(dose) term is highly
significant. The analysis of deviance test gives 163.745− 1.595 = 162.149 on 1
df with p = 0.000. Probit and complementary log-log models can be fitted in
S-Plus/R� using the following syntax (see Exercise 8.4):

a.glm<-glm(data∼log(dose), family=binomial(link=probit))

a.glm<-glm(data∼log(dose), family=binomial(link=cloglog))

8.4 Count data, contingency tables

and log-linear models

Suppose we have n observations from a population, and we wish to study a
characteristic which occurs in r possible types. We classify our observations,
and count the numbers n1, . . . , nr of each type (so n1 + . . . + nr = n). We may
wish to test the hypothesis H0 that type k occurs with probability pk, where

∑r

k=1
pk = 1.

Under this hypothesis, the expected number of type k is ek = npk; the observed
number is ok = nk. Pearson’s chi-square goodness-of-fit test (Karl Pearson
(1857–1936), in 1900) uses the chi-square statistic

X2 :=
∑r

k=1
(nk − npk)2/(npk) =

∑
(ok − ek)2/ek.

Then for large samples, X2 has approximately the distribution χ2(r − 1), the
chi-square distribution with r df; large values of X2 are evidence against H0.
The proof proceeds by using the multidimensional Central Limit Theorem to
show that the random vector (x1, . . . , xr), where

xk := (nk − npk)/
√

npk,
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is asymptotically multivariate normal, with mean zero and (symmetric) covari-
ance matrix

A = I − ppT ,

where p is the column vector

(
√

p1, . . . ,
√

pr)T .

Since
∑

kpk = 1, A is idempotent; its trace, and so its rank, is r − 1. This loss
of one degree of freedom corresponds to the one linear constraint satisfied (the
nk sum to n; the pk sum to 1). From this, the limiting distribution χ2(r − 1)
follows by Theorem 3.16. For details, see e.g. Cramér (1946), §30.1.

Now the distribution of the vector of observations (n1, . . . , nr) (for which
∑

ini = n) is multinomial:

P (n1 = k1, . . . , nr = kr) =
(

n

k1, . . . , kr

)

pk1
1 . . . pkr

r ,

for any non-negative integers k1, . . . , kr with sum n (the multinomial coefficient
counts the number of ways in which the k1 observations of type 1, etc., can be
chosen; then pk1

1 . . . pkr
r is the probability of observing these types for each such

choice.
According to the conditioning property of the Poisson process (see e.g.

Grimmett and Stirzaker (2001), §6.12–6.13), we obtain multinomial distribu-
tions when we condition a Poisson process on the number of points (in some
region).

These theoretical considerations lie behind the use of GLMs with Poisson
errors for the analysis of count data. The basic observation here is due to Nelder
in 1974. In the linear model of previous chapters we had additive normal er-
rors, and – regarded as a GLM – the identity link. We now have multiplicative
Poisson errors, the multiplicativity corresponding to the logarithmic link.

We assume that the logarithm of the ith data point, μi = Eyi, is given by
a linear combination of covariates:

log μi = ηi = βT xi (i = 1, . . . , n).

We shall refer to such models as log-linear models. For them, the link function
is the logarithm:

g(μ) = log μ.

Example 8.5 (Poisson modelling of sequences of small counts)

Suppose that we have the following (artificial) data in Table 8.4 and we wish
to model this count data using a Poisson Generalised Linear Model.
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x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
y 1 0 2 5 6 9 12 12 25 25 22 30 52 54

Table 8.4 Data for Example 8.5

A plot of the guarded logs, log(yi +0.5), against xi seems close to a straight
line although there is perhaps a slight suggestion of curvature. The model with
x on its own gives a residual deviance of 24.672 on 12 df The χ2 goodness-of-fit
test gives a p-value of 0.016, suggesting that the fit of this model is poor. The
model with a quadratic term has a residual deviance of 13.986 on 11 df This
model seems to fit better; the χ2 goodness of fit test gives a p-value of 0.234,
and the AIC of this model is 75.934. A plot of the guarded logs against log(xi)
also appears close to linear and log(x) thus seems a suitable candidate model.
Fitting this model gives a residual deviance of 14.526 on 12 df and appears
reasonable (χ2 test gives p = 0.268). The AIC for this model is 74.474 and thus
log(x) appears to be the best model.

All of this continues to apply when our counts are cross-classified by more
than one characteristic. We consider first the case of two characteristics, partly
because it is the simplest case, partly because we may conveniently display
count data classified by two characteristics in the form of a contingency table.
We may then, for example, test the null hypothesis that the two characteris-
tics are independent by forming an appropriate chi-square statistic. For large
samples, this will (under the null hypothesis) have approximately a chi-square
distribution with df (r−1)(s−1), where r and s are the numbers of forms of the
two characteristics. For proof, and examples, see e.g. Cramér (1946), Ch. 30.

We may very well have more than two characteristics. Similar remarks ap-
ply, but the analysis is more complicated. Such situations are common in the
social sciences – sociology, for example. Special software has been developed:
SPSS�3 (statistical package for the social sciences). Such multivariate count
data is so important that it has been treated at book length; see e.g. Bishop et
al. (1995), Plackett (1974), Fienberg (1980).

Another application area is insurance. A motor insurer might consider, when
assessing the risk on a policy, the driver’s age, annual mileage, sex, etc; also the
type of vehicle (sports cars are often charged higher premiums), whether used
for work, whether kept off-road, etc. A house insurer might consider number
of rooms (or bedrooms), indicators of population density, postal code (infor-
mation about soil conditions, and so subsidence risk, for buildings; about the
ambient population, and so risk of burglary, for contents, etc.). The simplest

3 SPSS� is a registered trademark of SPSS Inc., 233 S. Wacker Drive, 11th Floor,
Chicago, IL 60606, USA, http://www.spss.com

http://www.spss.com
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way to use such information is to use a linear regression function, or linear
predictor, as above, whence the relevance of GLMs. The S-Plus commands are
much as before:

glm(y ∼ ..., family = poisson).
We note in passing that the parameter λ in the Poisson distribution P (λ),

giving its mean and also its variance, is most naturally viewed as a rate, or
intensity, of a stochastic process – the Poisson point process with rate λ (in
time, or in space) – which corresponds to a risk in the insurance context. Thus
this material is best studied in tandem with a study of stochastic processes, for
which we refer to, e.g., Haigh (2002), Ch. 8, as well as Grimmett and Stirzaker
(2001), Ch. 6 cited earlier.

Example 8.6 (Skeleton analysis of 2×2 contingency tables)

For technical reasons, it can be important to distinguish between two cases of
interest.
Two response variables. Both variables are random, only the total sample size
∑

ijyij is fixed. The data in Exercise 7.4 are an example with two response
variables.
One response variable and one observed variable. The setting here is a con-
trolled experiment rather than an observational study. The design of the ex-
periment fixes row or column totals before the full results of the experiment
are known. One example of this is medical trials where patients are assigned
different treatment groups, e.g. placebo/vaccine, etc. The interested reader is
referred to Dobson and Barnett (2003), Ch. 9.

A range of different possible hypotheses applies in each of these two cases.
Apart from unrealistic or very uncommon examples, the main interest lies in
testing the hypothesis of no association between the two characteristics A and
B. It can be shown that this reduces to testing the adequacy of the log-linear
model

log(Y ) = const. + A + B.

The data in Table 8.5 give hair and eye colours for a group of subjects. We use
Poisson log-linear models to test for an association between hair and eye colour.
Fitting the model we obtain a residual deviance of 146.44 on 9 df leading to a
p-value of 0.000 and we reject the null hypothesis of no association.
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Brown Blue Hazel Green
Black hair 68 20 15 5
Brown hair 119 84 54 29
Red hair 26 17 14 14

Blond hair 7 94 10 16

Table 8.5 Data for Example 8.6

8.5 Over-dispersion and the Negative Binomial
Distribution

The fact that a Poisson mean and variance coincide gives a yardstick by which
to judge variability, or dispersion, of count data. If the variance-to-mean ratio
observed is > 1, the data are called over-dispersed (if < 1, they are called
under-dispersed, though this is less common). Equivalently, one may also use
the ratio of standard error to mean (coefficient of variation), often preferred to
the variance-mean ratio as it is dimensionless.

One model used for over-dispersion is to take a Gamma mixture of Poissons:
take a Poisson distribution with random mean, M say, where M is Gamma
distributed. Thus

P (Y = n|M = λ) = e−λλn/n!,

but (it is convenient here to reparametrise, from λ, α > 0 to ν, τ > 0) M ∼
Γ (ν/τ, ν): M has density

f(y) =
1

Γ (ν)

(νy

τ

)ν

e−νy/τ 1
y

(y > 0).

Then unconditionally

P (Y = n) =
∫ ∞

0

e−yyn

n!
1

Γ (ν)

(νy

τ

)ν

e−νy/τyn+ν−1 dy

=
νν

τν

1
n!Γ (ν)

1
(1 + ν/τ)n+ν

∫ ∞

0

e−uun+ν−1 du (y(1 + ν/τ) = u)

=
νν

τν(1 + ν/τ)n+ν

Γ (n + ν)
n!Γ (ν)

.

This is the Negative Binomial distribution, NB(ν, τ), in one of several
parametrisations (compare McCullagh and Nelder (1989), p237 and p373).
The mean is

μ = τ.

The variance is
V (μ) = τ + τ2/ν = μ + μ2/ν.

The model is thus over-dispersed.



198 8. Generalised Linear Models

Since Γ (1 + x) = xΓ (x),

Γ (n + ν)
n!Γ (ν)

=
(n + ν − 1)(n + ν − 2) . . . ν

n!
,

and when ν is a positive integer, r say, this has the form of a binomial coefficient
(

n + r − 1
n

)

=
(

n + r − 1
r − 1

)

.

In this case,

P (Y = n) =
(

n + r − 1
n

)

prqn (n = 0, 1, . . .),

writing
p := r/(τ + r), q := 1 − p = τ/(τ + r).

The case r = 1 gives the geometric distribution, G(p):

P (Y = n) = qnp (n = 0, 1, . . .),

the distribution of the number of failures before the first success in Bernoulli
trials with parameter p (‘tossing a p-coin’). This has mean q/p and variance
q/p2 (over-dispersed, since p ∈ (0, 1), so 1/p > 1). The number of failures
before the rth success has the negative binomial distribution in the form just
obtained (the binomial coefficient counts the number of ways of distributing
the n failures over the first n + r − 1 trials; for each such way, these n failures
and r − 1 successes happen with probability qnpr−1; the (n + r)th trial is a
success with probability p). So the number of failures before the rth success
(i) has the negative binomial distribution (which it is customary and convenient
to parametrise as NB(r, p) in this case);
(ii) is the sum of r independent copies of geometric random variables with dis-
tribution G(p);
(iii) so has mean rq/p and variance rq/p2 (agreeing with the above with r = ν,
p = r/(τ + r), q = τ/(τ + r)).
The Federalist.

The Federalist Papers were a series of essays on constitutional matters, pub-
lished in 1787–1788 by Alexander Hamilton, John Jay and James Madison to
persuade the citizens of New York State to ratify the U.S. Constitution. Author-
ship of a number of these papers, published anonymously, was later disputed
between Hamilton and Madison. Their authorship has since been settled by a
classic statistical study, based on the use of the negative binomial distribution
for over-dispersed count data (for usage of key indicator words – ‘whilst’ and
‘while’ proved decisive); see Mosteller and Wallace (1984).
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8.5.1 Practical applications: Analysis of over-dispersed
models in R�

For binomial and Poisson families, the theory of Generalised Linear Models
specifies that the dispersion parameter φ = 1. Over-dispersion can be very
common in practical applications and is typically characterised by the residual
deviance differing significantly from its asymptotic expected value given by the
residual degrees of freedom (Venables and Ripley (2002)). Note, however, that
this theory is only asymptotic. We may crudely interpret over-dispersion as
saying that data varies more than if the underlying model really were from a
Poisson or binomial sample. A solution is to multiply the variance functions
by a dispersion parameter φ, which then has to be estimated rather than sim-
ply assumed to be fixed at 1. Here, we skip technical details except to say
that this is possible using a quasi-likelihood approach and can be easily im-
plemented in R� using the Generalised Linear Model families quasipoisson

and quasibinomial. We illustrate the procedure with an application to over-
dispersed Poisson data.

Example 8.7

We wish to fit an appropriate Generalised Linear Model to the count data
of Exercise 7.2. Fitting the model with both blocks and treatments gives a
residual deviance of 242.46 on 12 df giving a clear indication of over-dispersion.
A quasi-poisson model can be fitted with the following commands:

m1.glm<-glm(data∼blocks+treatments, family=quasipoisson)

summary(m1.glm)

Since we have to estimate the dispersion parameter φ we use an F -test to
distinguish between the models with blocks and treatments and the model with
blocks only. We have that

F =
ΔResidual deviance

Δdf(φ̂)
=

3468.5− 242.46
4(21.939)

= 36.762.

Testing against F4,12 gives a p-value of 0.000. Similar procedures can be used
to test the effectiveness of blocking (see Exercise 8.5).
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EXERCISES

8.1. Canonical forms. Show that these common probability distributions
can be written in the canonical form of a Generalised Linear Model
as shown in Table 8.6:

Normal Poisson Binomial Gamma

N(θ, φ) Po(eθ) ny∼Bi
(
n, eθ

1+eθ

)
Γ
(

1
φ ,− θ

φ

)

φ
ω φ 1 n−1 φ

b(θ) θ2

2 eθ log
(
1 + eθ

)
− log(−θ)

c(y, θ) − y2

2φ − φ log(2π)
2 − log(y!) log

(
n

ny

) (
1
φ − 1

)
log y

− log φ
φ + log φ

μ = b′(θ) θ eθ eθ

1+eθ − 1
θ

b′′(θ) 1 μ μ(1 − μ) μ2

Table 8.6 Canonical forms for Exercise 8.1

8.2. (Residual) deviance calculations. Show that for the following com-
mon probability distributions the residual deviances can be calcu-
lated as follows:

Poisson

2
∑

i

(

yi log
(

yi

μ̂i

)

− (yi − μ̂i)
)

,

Binomial

2
∑

i
ni

{

yi log
(

yi

μ̂i

)

+ (1 − yi) log
(

1 − yi

1 − μ̂i

)}

,

Gamma

2
∑

i
log
(

μ̂i

yi

)

+
yi − μ̂i

μ̂i
.

8.3. Test the hypothesis of no association between haul and number for
the data in Exercise 7.4 using
(i) a Poisson log-linear model,
(ii) the Pearson χ2 test of no association,
and comment on your findings.

8.4. Re-fit the data in Example 8.4 using
(i) a probit model,
(ii) a complementary log-log model,
(iii) an approximate method using general linear models.
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8.5. Re-fit the data in Exercise 7.2 using a Poisson Generalised Linear
Model, before switching to an over-dispersed Poisson model if this
seems appropriate. Test for the effectiveness of blocking by seeing if
the model with just the blocks term offers an improvement over the
null model.

8.6. Suppose that we have the following data for the number of unusable
ears of corn shown in Table 8.7. (Assume totals are out of 36.) Anal-
yse these data by fitting a binomial Generalised Linear Model, using
a quasi-binomial model if it appears that we have over-dispersion.
Compare your results with an approximation using General Linear
Models on similar data in Exercise 7.3 and interpret the results.

Block 1 2 3 4 5 6
Treatment A 15 12 9 14 20 18
Treatment B 12 12 2 9 11 10
Treatment C 3 8 2 6 5 6
Treatment D 6 7 6 1 4 4

Table 8.7 Data for Exercise 8.6

8.7. Generalised Linear Model with Gamma errors. Using the data in
Exercise 1.6 fit a Gamma Generalised Linear Model. Interpret your
findings and compare both with Exercise 1.6 and the analyses in
§5.3. Write down the equation of your fitted model.

8.8. Inverse Gaussian distribution. The inverse Gaussian distribution is
the distribution on the positive half-axis with probability density

f(y) =

√
λ

2πy3
exp

(−λ(y − μ)2

2μ2y

)

.

Show that this density lies in the exponential family (see Exercise
8.1).

8.9. Generalised Linear Model with inverse Gaussian errors. Repeat Ex-
ercise 8.7 using an inverse Gaussian Generalised Linear Model.

8.10. The effect of ageing on athletic performance. Using the fitted equa-
tions obtained in Exercises 8.7 and 8.9 and using x = 63, comment
on the effect of
(i) ageing,
(ii) club status.
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Other topics

9.1 Mixed models

In §5.1 we considered extending our initial model (M0), with p parameters, to
an augmented model MA with a further q parameters. Here, as in Chapter 2,
we have p + q << n, there are many fewer parameters than data points. We
now turn to a situation with some similarities but with important contrasts.
Here our initial model has fixed effects, but our augmented model adds random
effects, which may be comparable in number to the sample size n.

We mention some representative situations in which such mixed models
occur.
1. Longitudinal studies (or panel data). Suppose we wish to monitor the effect
of some educational initiative. One may choose some representative sample
or cohort of school children or students, and track their progress over time.
Typically, the resulting data set consists of a large number (the size of the
cohort) of short time series (the longer the time the more informative the
study, but the more expensive it is, and the longer the delay before any useful
policy decisions can be made). For background on longitudinal data, see Diggle
et al. (2002).

Here one takes for granted that the children in the cohort differ – in
ability, and in every other aspect of their individuality. One needs information
on between-children variation (that is, on cohort variance); this becomes a
parameter in the mixed model. The child effects are the random effects: if
one repeated the study with a different cohort, these would be different. The
educational aspects one wishes to study are the fixed effects.

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 203
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 9,
c© Springer-Verlag London Limited 2010
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2. Livestock studies. One may wish to follow the effect of some treatments – a
diet, or dietary supplements, say – over time, on a cohort of livestock (cattle,
sheep or pigs, say). Again, individual animals differ, and these give the random
effects. The fixed effects are the objects of study.

The field of mixed models was pioneered in the US dairy industry by
C. R. Henderson (1911–1989) from 1950 on, together with his student
S. R. Searle (1928–). Searle is the author of standard works on linear models
(Searle (1991)), variance components (Searle, Casella and McCulloch (1992)),
and matrix theory for statisticians (Searle (1982)). Henderson was particularly
interested in selection of sires (breeding bulls) in the dairy industry. His work
is credited with having produced great gains in yields, of great economic value.
3. Athletics times. One may wish to study the effect of ageing on athletes past
their peak. One way to do this is to extract from the race results of a particular
race over successive years the performances of athletes competing repeatedly.
Again, individual athletes differ; these are the random effects. Fixed effects
one might be interested in include age, sex and club status. For background,
see Bingham and Rashid (2008).

We shall follow the notation of §5.1 fairly closely. Thus we write

W = (X, Z)

for the new design matrix (n × (p + q)). It is convenient to take the random
effects – which as is customary we denote by u – to have zero mean (any additive
terms coming from the mean Eu can be absorbed into the fixed effects). Thus
the linear mixed model is defined by

y = Xβ + Zu + ε, (LMM)

where (both means are zero and) the covariance matrices are given by

Eε = Eu = 0, cov(ε, u) = 0, R := var ε, D := var u,

(‘R for regresssion, D for dispersion’). One can write (LMM) as an ordinary
linear model,

y = Xβ + ε∗, ε∗ := Zu + ε.

By Proposition 4.5, this has covariance matrix

V := cov ε∗ = ZDZT + R

(‘V for variance’). So by Theorem 3.5, the generalised least-squares solution is

β̂ = (XT V −1X)−1XT V −1y. (GLS)
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We now specify the distributions in our model by assuming that u is multi-
variate normal (multinormal), and that the conditional distribution of y given
u is also multinormal:

y|u ∼ N(Xβ + Zu, R), u ∼ N(0, D). (NMM)

Then the (unconditional) distribution of y is a normal mean mixture, whence
the name (NMM). Now the joint density f(y, u) is

f(y, u) = f(y|u)f(u),

the product of the conditional density of y given u and the density of u. So

f(y, u) = const. exp{−1
2
(y−Xβ−Zu)TR−1(y−Xβ−Zu)}. exp

{

−1
2
uT D−1u

}

.

Thus to maximise the likelihood (with respect to β and u), we maximise f(y, u),
that is, we minimise:

min (y − Xβ − Zu)T R−1(y − Xβ − Zu) + uT D−1u. (pen)

Note the different roles of the two terms. The first, which contains the data,
comes from the likelihoood; the second comes from the random effects. It serves
as a penalty term (the penalty we pay for not knowing the random effects). So
we have here a penalised likelihood (recall we encountered penalised likelihood
in §5.2.1, in connection with nested models and AIC).

The least-squares solution of Chapters 3, 4 gives the best linear unbiased
estimator or BLUE (see §3.3). It is conventional to speak of predictors, rather
than estimators, with random effects. The solution is thus a best linear unbiased
predictor, or BLUP.

Theorem 9.1

The BLUPs – the solutions β̂, û, of the minimisation problem (MME) – satisfy

XR−1Xβ̂ + XT R−1Zû = XT R−1y,

ZR−1Xβ̂ +
[
ZT R−1Z + D−1

]
û = ZT R−1y

}

(MME)

(Henderson’s mixed model equations of 1950).

Proof

We use the vector calculus results of Exercises 3.6–3.7. If we expand the first
term in (pen) above, we obtain nine terms, but the quadratic form in y does
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not involve β or u, so we discard it; this with the second term above gives nine
terms, all scalars, so all their own transposes. This allows us to combine three
pairs of terms, reducing to six terms, two linear in β, two linear in u and two
cross terms in β and u; there is also a quadratic term in β, and two quadratic
terms in u, which we can combine. Setting the partial derivatives with respect
to β and u equal to zero then gives

−2yT R−1X + 2uT ZT R−1X + 2βT XT R−1X = 0,

−2yT R−1Z + 2βT XT R−1Z + 2uT
[
ZT R−1Z + D−1

]
= 0,

or
XT R−1Xβ + XT R−1Zu = XT R−1y,

ZT R−1Xβ + [ZT R−1Z + D−1]u = ZT R−1y,

}

(MME)

as required.

9.1.1 Mixed models and Generalised Least Squares

To proceed, we need some matrix algebra. The next result is known as the
Sherman–Morrison–Woodbury formula, or Woodbury’s formula (of 1950).

Lemma 9.2 (Woodbury’s Formula)

(A + UBV )−1 = A−1 − A−1U.(I + BV A−1U)−1.BV A−1,

if all the matrix products are conformable and all the matrix inverses exist.

Proof

We have to show that if we pre-multiply or post-multiply the right by A+UBV

we get the identity I.
Pre-multiplying, we get four terms. Taking the first two as those from (A+

UBV )A−1, these are

I + UBV A−1 − U(I + BV A−1U)−1BV A−1

−UBV A−1U(I + BV A−1U)−1BV A−1.

The third and fourth terms combine, to give

I + UBV A−1 − U.BV A−1 = I,

as required. The proof for post-multiplying is similar.
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Applied in the context of §9.1 (where now V := ZDZT +R, as above), this
gives

Corollary 9.3

(i)

V −1 := (ZDZT + R)−1 = R−1 − R−1Z(ZT R−1Z + D−1)−1ZR−1.

(ii)
DZT V −1 = (ZT R−1Z + D−1)−1ZT R−1.

Proof

For (i), we use Woodbury’s Formula with R, Z, D, ZT for A, U , B, V :

(R + ZDZT )−1 = R−1 − R−1Z.(I + DZT R−1Z)−1.DZT R−1

= R−1 − R−1Z.[D(D−1 + ZT R−1Z)]−1.DZT R−1

= R−1 − R−1Z.(D−1 + ZT R−1Z)−1.ZT R−1.

For (ii), use Woodbury’s Formula with D−1, ZT , R−1, Z for A, U , B, V :

(D−1 + ZT R−1Z)−1 = D − DZT .(I + R−1ZDZT )−1.R−1ZD,

so
(D−1+ZTR−1Z)−1ZT R−1 =DZ T R−1−DZT(I+R−1ZDZ T )−1R−1ZDZT R−1.

The right is equal to DZT [I − (I + R−1ZDZT )−1R−1ZDZT ]R−1, or equiva-
lently, to DZT [I − (I +R−1ZDZT )−1{(I +R−1ZDZT )− I}]R−1. Combining,
we see that

(D−1 + ZT R−1Z)−1ZT R−1 = DZT [I − I + (I + R−1ZDZT )−1]R−1

= DZT (R + ZDZT )−1

= DZT V −1,

as required.

Theorem 9.4

The BLUP β̂ in Theorem 9.1 is the same as the generalised least-squares esti-
mator:

β̂ =
(
XT V −1X

)−1
XT V −1y. (GLS)
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The BLUP û is given by either of

û =
(
ZT R−1Z + D−1

)−1
ZT R−1

(
y − Xβ̂

)

or
û = DZT V −1

(
y − Xβ̂

)
.

Proof

We eliminate û between the two equations (MME). To do this, pre-multiply
the second by XT R−1Z(ZT R−1Z + D−1)−1 and subtract. We obtain that

XT R−1Xβ̂ − XT R−1Z
(
ZT R−1Z + D−1

)−1
ZT R−1Xβ̂ =

XT R−1y − XT R−1Z
(
ZT R−1Z + D−1

)−1
ZT R−1y. (a)

Substitute the matrix product on the right of Corollary 9.3(i) into both sides
of (a):

XT R−1Xβ̂ − XT
{
R−1 − V −1

}
Xβ̂ = XT R−1y − XT

{
R−1 − V −1

}
y,

or
XT V −1Xβ̂ = XT V −1y,

which is
β̂ = (XT V −1X)−1XT V −1y,

as in (GLS).
The first form for û follows from the second equation in (MME). The

second follows from this by Corollary 9.3(ii).

The conditional density of u given y is

f(u|y) = f(y, u)/f(y) = f(y|u)f(u)/f(y)

(an instance of Bayes’s Theorem: see e.g. Haigh (2002), §2.2). We obtain f(y)
from f(y, u) by integrating out u (as in §1.5 on the bivariate normal). By above
(below (NMM)), f(y, u) is equal to a constant multiplied by

exp{−1
2
[uT (ZT R−1Z+D−1)u−2uTZT R−1(y−Xβ)+(y−Xβ)TR−1(y−Xβ)]}.

This has the form of a multivariate normal. So by Theorem 4.25, u|y is also
multivariate normal. We can pick out which multivariate normal by identifying
the mean and covariance from Edgeworth’s Theorem, Theorem 4.16 (see also
Note 4.30). Looking at the quadratic term in u above identifies the covariance
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matrix as (ZT R−1Z + D−1)−1. Then looking at the linear term in u identifies
the mean as (

ZT R−1Z + D−1
)−1

ZT R−1(y − Xβ).

Here β on the right is unknown; replacing it by its BLUP β̂ gives the first form
for û (recall from §4.5 that a regression is a conditional mean; this replacement
of β by β̂ is called a plug-in estimator). The interpretation of the second form
of û, in terms of the regression of u on y with β̂ plugged in for β, is similar (as
in (GLS), with (XT V −1X)−1 replaced by (IT D−1I)−1 = D, XT by ZT and
y by y − Xβ̂.

Note 9.5

1. The use of Bayes’s Theorem above is very natural in this context. In Bayesian
Statistics, parameters are no longer unknown constants as here. Our initial un-
certainty about them is expressed in terms of a distribution, given here by a
density, the prior density. After sampling and obtaining our data, one uses
Bayes’s Theorem to update this prior density to a posterior density. From this
Bayesian point of view, the distinction between fixed and random effects in the
mixed model above evaporates. So one can expect simplification, and unifica-
tion, in a Bayesian treatment of the Linear Model. However, one should first
meet a treatment of Bayesian Statistics in general, and for this we must refer
the reader elsewhere. For a Bayesian treatment of the Linear Model (fixed ef-
fects), see Williams (2001), §8.3.

Bayes’s Theorem stems from the work of Thomas Bayes (1702–1761, posthu-
mously in 1764). One of the founders of modern Bayesian Statistics was I. J.
Good (1916–2009, from 1950 on). Good also pioneered penalised likelihood,
which we met above and will meet again in §9.2 below.
2. In Henderson’s mixed model equations (MME), one may combine β and u

into one vector, v say, and express (MME) as one matrix equation, Mv = c

say. This may be solved as v = M−1c. Here, one needs the inverse of the par-
titioned matrix M . We have encountered this in Exercise 4.10. The relevant
Linear Algebra involves the Schur complement, and gives an alternative to the
approach used above via Woodbury’s Formula.

Example 9.6 (Mixed model analysis of ageing athletes)

We give a brief illustration of mixed models with an application to the athletics
data in Table 9.1.

In S-Plus/R� the basic command is lme, although in R� this requires load-
ing the package nlme. We fit a model using Restricted Maximum Likelihood
(REML) with fixed effects for the intercept, age and club status, and a random
intercept depending on each athlete.
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Athlete Age Club Time Athlete Age Club Time
1 38 0 91.500 4 41 0 91.167
1 39 0 89.383 4 42 0 90.917
1 40 0 93.633 4 43 0 90.883
1 41 0 93.200 4 44 0 92.217
1 42 0 93.533 4 45 1 94.283
1 43 1 92.717 4 46 0 99.100
2 53 1 96.017 5 54 1 105.400
2 54 1 98.733 5 55 1 104.700
2 55 1 98.117 5 56 1 106.383
2 56 1 91.383 5 57 1 106.600
2 58 1 93.167 5 58 1 107.267
2 57 1 88.950 5 59 1 111.133
3 37 1 83.183 6 57 1 90.250
3 38 1 83.500 6 59 1 88.400
3 39 1 83.283 6 60 1 89.450
3 40 1 81.500 6 61 1 96.380
3 41 1 85.233 6 62 1 94.620
3 42 0 82.017

Table 9.1 Data for Example 9.6. The times are taken from athletes regularly
competing in the Berkhamsted Half–Marathon 2002–2007.

m1.nlme<-lme(log(time)∼club+log(age), random=∼1|athlete)
summary(m1.nlme)

From the output, t-statistics show that the fixed effects term for age is
significant (p = 0.045) but suggest that a fixed effects term for club status
is not needed (p = 0.708). We repeat the analysis, excluding the fixed effects
term for club status:

m2.nlme<-lme(log(time)∼log(age), random=∼1|athlete)

Next we fit a model with a fixed effect term for age, but allow for the
possibility that this coefficient can vary randomly between athletes:

m3.nlme<-lme(log(time)∼log(age), random=∼1+log(age)|athlete)
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The AIC for these latter two models are −114.883 and −112.378 respec-
tively, so the most appropriate model appears to be the model with a random
intercept term and a fixed age-effect term. Log(age) is significant in the cho-
sen model – a t-test gives a p-value of 0.033. A 95% confidence interval for
the coefficient of log(age) is 0.229 ± 0.209, consistent with earlier estimates in
Examples 3.37 and 8.3, although this time this estimate has a higher level of
uncertainty attached to it.

One reason why the ageing effect appears to be weaker here is that the
Berkhamsted Half-Marathon (in March) is often used as a ‘sharpener’ for the
London Marathon in April. One could allow for this by using a Boolean variable
for London Marathon status (though full data here would be hard to obtain
for any data set big enough for the effort to be worthwhile).

9.2 Non-parametric regression

In §4.1 on polynomial regression, we addressed the question of fitting a func-
tion f(x) more general than a straight line through the data points in the
least-squares sense. Because polynomials of high degree are badly behaved nu-
merically, we restricted attention there to polynomials of low degree. This is a
typical parametric setting.

However, we may need to go beyond this rather restricted setting, and if we
do the number of parameters we use can increase. This provides more flexibility
in fitting. We shall see below how spline functions are useful in this context.
But the point here is that we can now move to a function-space setting, where
the dimensionality of the function space is infinite. We will use only finitely
many parameters. Nevertheless, because the number of parameters available
is infinite, and because one usually uses the term non-parametric to describe
situations with infinitely many parameters, this area is referred to as non-
parametric regression.

The idea is to choose some suitable set of basic, or simple, functions, and
then represent functions as finite linear combinations of these. We have met this
before in §4.1, where the basic functions are powers, and §4.1.2, where they are
orthogonal polynomials. The student will also have met such ideas in Fourier
analysis, where we represent functions as series of sines and cosines (infinite
series in theory, finite series in practice). Many other sets of basic functions
are in common use – splines, to which we now turn, radial basis functions,
wavelets, etc. The relevant area here is Approximation Theory, and we must
refer to a text in that area for details and background; see e.g. Ruppert, Wand
and Carroll (2003).
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The above deals with functions of one variable, or problems with one covari-
ate, but in Chapter 3 we already have extensive experience of problems with
several covariates. A similar extension of the treatment to higher dimensions
is possible here too. For brevity, we will confine such extensions to two di-
mensions. Non-parametric regression in two dimensions is important in Spatial
Statistics, to which we return in the next subsection.

Recall that in §4.1 on polynomial regression we found that polynomials of
high degree are numerically unstable. So if a polynomial of low degree does
not suffice, one needs functions of some other kind, and a suitable function
class is provided by splines. A spline of degree p is a continuous function f

that is piecewise polynomial of degree p, that is, polynomial of degree p on
subintervals [xi, xi+1], where f and its derivatives f ′, . . . , f (p−1) are continuous
at the points xi, called the knots of the spline. Typical splines are of the form

(x − a)k
+, xk

+ :=
{

xk, x≥0,

0, x < 0.

We shall restrict ourselves here to cubic splines, with p = 3; here f , f ′ and f ′′

are continuous across the knots xi. These may be formed by linear combinations
of functions of the above type, with k ≤ 3 and a the knots xi. It is possible and
convenient, to restrict to basic splines, or B-splines. These are of local character,
which is convenient numerically, and one can represent any spline as a linear
combination of B-splines. For background and details, see e.g. de Boor (1978).

Suppose now we wish to approximate data yi at points xi. As with poly-
nomial regression, we can approximate arbitrarily closely in the least-squares
sense, but this is no use to us as the approximating functions are unsuitable.
This is because they oscillate too wildly, or are insufficiently smooth. To control
this, we need to penalise functions that are too rough. It turns out that a suit-
able measure of roughness for cubic splines is provided by the integral

∫
(f ′′)2

of the squared second derivative. We are led to the minimisation problem

min
∑n

i=1
(yi − f(xi))

2 + λ2

∫

(f ′′(x))2 dx.

Here the first term is the sum of squares as before, the integral term is a rough-
ness penalty, and λ2 is called a smoothing parameter. (As the sum is of the
same form as in the likelihood theory of earlier chapters, and the integral is
a penalty term, the method here is called penalised likelihood or penalised log-
likelihood.) With λ small, the roughness penalty is small and the minimiser is
close to the least-squares solution as before; with λ large, the roughness penalty
is large, and the minimiser will be smooth, at the expense of giving a worse
least-squares fit. Since λ is under our control, we have a choice as to how much
smoothness we wish, and at what cost in goodness of fit.
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It turns out that the minimising function f above is necessarily a cubic
spline with knots at the points xi. This will be a linear combination of B-splines
Bj(x), with coefficients βj say. Forming the βj into a vector β also, the approx-
imating f is then

f(x) = βT B(x),

and the mimimisation problem is of the form

min
∑n

i=1

(
yi − βT B(xi)

)2
+ λ2βT Dβ,

for some symmetric positive semi-definite matrix D whose entries are integrals
of products of derivatives of the basic splines.

This minimisation problem is of the same form as that in §9.1 for BLUPS,
and may be solved in the same way: smoothing splines are BLUPs. Let X be
the matrix with ith row B(xi)T . One obtains the minimising β and fitted values
ŷ as

β̂ = (XT X + λ2D)−1XT y, ŷ = X(XT X + λ2D)−1XT y = Sλy,

say, where Sλ is called the smoother matrix. Use of smoothing splines can
be implemented in S-Plus/R� by the command smooth.spline; see Venables
and Ripley (2002), §8.7. For background and details, see Green and Silverman
(1994), Ruppert, Wand and Carroll (2003).

Splines were studied by I. J. Schoenberg (1903–1990) from 1946 on, and
were used in Statistics by Grace Wahba (1934–) from 1970 on. The term spline
derives from the flexible metal strips used by draughtsmen to construct smooth
curves interpolating fixed points, in the days before computer-aided design
(CAD). Penalised likelihood and roughness penalties go back to I. J. Good
(with his student R. A. Gaskins) in 1971 (preceding the AIC in 1974).

9.2.1 Kriging

Kriging describes a technique for non-parametric regression in spatial prob-
lems in multiple (commonly three) dimensions. The original motivation was to
model ore deposits in mining, though applications extend beyond geology and
also typically include remote sensing and black-box modelling of computer ex-
periments. The name kriging derives from the South African mining engineer
D. G. Krige (1919–), and was further developed in the 1960s by the French
mathematician G. Matheron (1930–2000) at the Paris School of Mines. The
basic idea behind kriging is as follows. We observe data

(x1, y1), . . . , (xn, yn),
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where the xi ∈ R
d and the yi ∈ R. We might imagine the xi as a sequence of

co-ordinates and the yi as corresponding to observed levels of mineral deposits.
If d = 2, this picture corresponds to a three-dimensional plot in which y is the
height. Given the observed sequence of (xi, yi) we wish to estimate the y values
corresponding to a new set of data x0. We might, for example, envisage this
set-up corresponding to predicting the levels of oil or mineral deposits, or some
environmental pollutant etc., at a set of new locations given a set of historical
measurements. The set-up for our basic kriging model is

yi = μ + S(xi) + εi,

where S(x) is a zero-mean stationary stochastic process in R
d with covariance

matrix C independent of the εi, which are assumed iid N(0, σ2). However, this
formulation can be made more general by choosing μ = μ(x) (Venables and
Ripley (2002), Ch. 15). It is usually assumed that

Cij = cov (S(xi,xj)) = C(||xi − xj||), (Isotropy)

although more general models which do not make this assumption are possible.
Suppose that the εi and S(·) are multivariate normal. By §4.6 the mean square
error is minimised by the Conditional Mean Formula given by Theorem 4.25.
We have that

(
y(x0)
y(x0)

)

∼ N

((
μ1
μ

)

,

( (
C + σ2I

)
c0

cT
0 σ2

))

,

where 1 denotes a column vector of 1s. It follows that the optimal prediction
(best linear predictor) for the unobserved y(x0) given the observed y(x0) is
given by

ŷ(x0) = μ + cT
0

(
C + σ2I

)−1
(y(x0) − μ1). (BLP )

From first principles, it can be shown that this still gives the best linear predictor
(BLP) when we no longer assume that S(x) and εi are Gaussian. In practice C
can be estimated using either maximum likelihood or variogram methods (some
details can be found in Ruppert, Wand and Carroll (2003), Ch. 13 or Venables
and Ripley (2002), Ch. 15). As presented in Ruppert, Wand and Carroll (2003)
the full kriging algorithm is as follows:

1. Estimate the covariance function C, σ2 and set μ = y.

2. Construct the estimated covariance matrix Ĉ = C(||xi − xj ||).

3. Set up a mesh of x0 values in the region of interest.

4. Using (BLP ) construct a set of predicted values ŷ(x0).

5. Plot ŷ(x0) against x0 to estimate the relevant spatial surface.
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As briefly discussed in Ruppert, Wand and Carroll (2003), Ch. 13.3–4. it is
possible to relate kriging to the non-parametric regression models with a non-
parametric regression model using cubic splines. In particular, two-dimensional
kriging can be shown to be equivalent to minimising

∑n

i=1
(yi − f(x1, x2))

2 + λ

∫ ∫
(
f2

x1x1
+ 2f2

x1x2
+ f2

x2x2

)
dx1 dx2.

This gives an integral of the sum of squares of second derivatives to generalise
cubic splines; see e.g. Cressie (1993) §3.4.5 for further details.

The end product of a kriging study may well be some computer graphic,
perhaps in (a two-dimensional representation of) three dimensions, perhaps in
colour, etc. This would be used to assist policy makers in decision taking – e.g.
whether or not to drill a new oil well or mine shaft in some location, whether or
not to divert traffic, or deny residential planning permission, for environmental
reasons, etc. Specialist software is needed for such purposes.

9.3 Experimental Design

9.3.1 Optimality criteria

We have already seen in §7.1 how to identify unusual data points, in terms of
their leverage and influence. For example, Cook’s distance Di is defined by a
quadratic form in the information matrix C = AT A formed from the design
matrix A. Before conducting the statistical experiment that leads to our data y,
the design matrix A is still at our disposal, and it is worth considering whether
we can choose A in some good way, or better still, in some optimal way. This
is indeed so, but there are a number of different possible optimality criteria.
One criterion in common use is to maximise the determinant of the information
matrix C, the determinant |C| serving as a measure of quantity of information
(recall from vector algebra that the volume of a parallelepiped with sides three
3-vectors is the determinant of their co-ordinates).

The situation is similar to that in our first course in Statistics, when we
discussed estimation of parameters. Here two important measures of quality of
an estimator θ̂ of a parameter θ are bias, Eθ̂ − θ, and precision, measured by
the inverse of the variance var θ; we can think of this variance as a measure
of sampling error, or noise. We want to keep both noise and bias low, but it is
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pointless to diminish one at the expense of increasing the other. One thus has a
noise–bias tradeoff, typical in Statistics. To choose how to make this trade–off,
one needs some optimality criterion. This is usually done by choosing some loss
function (or alternatively, some utility function). One then minimises expected
loss (or maximises expected utility). This area of Statistics is called Decision
Theory.

The situation here is similar. One needs some optimality criterion for the
experimental design (there are a number in common use) – maximising the
determinant as above corresponds to D-optimality – and seeks to optimise the
design with respect to this criterion. For further detail, we must refer to a book
on Optimal Experimental Design, for example Atkinson and Donev (1992).

9.3.2 Incomplete designs

In addition to the profoundly mathematical criteria above, there are also more
tangible ways in which experimental design can bring benefits to experimenters
by reducing the sample size requirements needed in order to perform a full anal-
ysis. It is frequently impractical, say in an agricultural experiment, to grow or
include every combination of treatment and block. (Recall that in §2.7 every
combination of treatment and block occurred once, with multiple replications
possible in §2.8.)

Rather than admitting defeat and returning to one-way ANOVA (hence
confounding treatment effects with block effects) we need some incomplete de-
sign which nonetheless enables all treatment and block effects to be estimated.
The factors of treatment and block need to be balanced, meaning that any two
treatments occur together in the same block an equal number of times. This
leads to a set of designs known as balanced incomplete block designs (BIBD).
These designs are usually tabulated, and can even be used in situations where
the blocks are of insufficient size to accommodate one whole treatment alloca-
tion (provided that the allocation of experimental units is appropriately ran-
domised). For full details and further reference we refer to Montgomery (1991),
Ch. 6. Analysis of large experiments using fractions of the permissible factor
combinations is also possible in so-called factorial experiments using fractional
factorial designs (see Montgomery (1991) Ch. 9–12).

Example 9.7 (Latin Squares)

We consider briefly the simplest type of incomplete block design. Suppose we
have (e.g.) five types of treatment (fertiliser) to apply to five different varieties
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of wheat on five different types of soil. This simple experiment leads to 125
different factor combinations in total. It is economically important to be able
to test

H0 : The treatment (fertiliser) means are all equal,

in such two-factor experiments (variety and soil type) with fewer than 125
readings. We can make do with 25 readings by means of a 5×5 Latin square
(see Table 9.2). Each cell contains each fertiliser type once, showing that the
design is indeed balanced. Given experimental observations, an ANOVA table
with three factors (Soil type, Variety and Fertiliser) can be constructed by using
the general methods of Chapter 2.

Variety
Soil Type 1 2 3 4 5

1 1 2 3 4 5
2 5 1 2 3 4
3 4 5 1 2 3
4 3 4 5 1 2
5 2 3 4 5 1

Table 9.2 5×5 Latin square design. Fertiliser allocations by Soil Type and
Variety.

Analysis of n×n Latin squares. We show how to perform a skeleton ANOVA
for a n×n Latin square design. The approach follows the same general outline
laid out in Chapter 2, but generalises §2.6–2.7 by including three factors. In
effect, we isolate treatment effects by ‘blocking’ over rows and columns. The
model equation can be written as

Xijk = μ + ri + cj + tk + εijk, εijk iid N(0, σ2),

for i, j = 1. . ., n, where k = k(i, j) is the entry in the Latin square in position
(i, j) in the matrix. Note k = 1, . . ., n also. The ri, cj , tk denote row, column
and treatment effects respectively and satisfy the usual constraints:

∑

i
ri =

∑

j
cj =

∑

k
tk = 0.

Write

Ri = ith row total, Xi• = Ri/n = ith row mean,

Cj = jth column total, X•j = Cj/n = jth column mean,
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Tk = kth treatment total, X(k) = Tk/n = kth treatment mean,

G = grand total =
∑

i

∑

j

∑

k
Xijk, X = G/n grand mean.

The following algebraic identity can be verified:

SS := SSR + SSC + SST + SSE,

where

SS :=
∑

i

∑

j

∑

k

(
Xijk − X

)2
=

∑

i

∑

j

∑

k
X2

ijk − G2

n2
,

SSR := n
∑

i

(
Xi• − X

)2
=

1
n

∑

i
R2

i − G2

n2
,

SSC := n
∑

j

(
X•j − X

)2
=

1
n

∑

j
C2

j − G2

n2
,

SST := n
∑

k

(
X(k) − X

)2
=

1
n

∑

k
T 2

k − G2

n2
,

SSE :=
∑

i

∑

j

∑

k

(
Xijk − Xi• − X•j − X(k) + 2X

)2
,

with SSE = SS − SSR − SSC − SST as before. An Analysis of Variance of
this model can be performed as laid out in Table 9.3.

Source df SS Mean Square F

Rows n − 1 SSR MSR = SSR
n−1 MSR/MSE

Columns n − 1 SSC MSC = SSC
n−1 MSC/MSE

Treatments n − 1 SST MST = SST
n−1 MST/MSE

Residual (n − 1)(n − 2) SSE MSE = SSE
(n−1)(n−2)

Total n2 − 1 SS

Table 9.3 ANOVA table for n×n Latin square

Note 9.8

While Experimental Design is a very useful and practical subject, it also uses
a lot of interesting pure mathematics. One area important here is projective
geometry over finite fields; see e.g. Hirschfeld (1998). Whereas the mathematics
here is discrete, as one would expect since matrix theory is involved, important
insights can be gained by using a continuous framework, and so analysis rather
than algebra; see e.g. Wynn (1994).

Experimental Design is one of a number of areas pioneered by Fisher in
his time at Rothamsted in the 1920s, and by his Rothamsted colleague Frank
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Yates (1902–1994). Fisher published his book The Design of Experiments in
1935.

9.4 Time series

It often happens that data arrive sequentially in time. This may result in mea-
surements being taken at regular intervals – for example, daily temperatures
at noon at a certain meteorological recording station, or closing price of a par-
ticular stock, as well as such things as monthly trade figures and the like. We
may suppose here that time is measured in discrete units, and that the nth
reading is Xn. Then the data set X = (Xn) is called a time series (TS).

One often finds in time series that high values tend to be followed by high
values, or low values by low values. Typically this is the case when the un-
derlying system has some dynamics (probably complicated and unknown) that
tends to fluctuate about some mean value, but intermittently undergoes some
perturbation away from the mean in some direction, this perturbation showing
a marked tendency to persist for some time, rather than quickly die away.

In such cases one has a persistence of memory phenomenon; the question
is how long does memory persist? Sometimes memory persists indefinitely, and
the infinitely remote past continues to exert an influence (rather as the mag-
netism in a rock reflects the conditions when the rock solidified, in a former
geological era, or tempered steel locks in its thermal history as a result of the
tempering process). But more commonly only the recent past really influences
the present. Using p for the number of parameters as usual, we may repre-
sent this by a model in which the present value Xt is influenced by the last p

values Xt−1, . . . , Xt−p. The simplest such model is a linear regression model,
with these as covariates and Xt as dependent variable. This gives the model
equation

Xt = φ1Xt−1 + . . . + φpXt−p + εt. (AR(p))

Here the φi are the parameters, forming a vector φ, and the εt are independent
errors, normally distributed with mean 0 and common variance σ2. This gives
an autoregressive model of order p, AR(p), so called because the process X is
regressed on itself.

For simplicity, we centre at means (that is, assume all EXt = 0) and restrict
to the case when X = (Xn) is stationary (that is, its distribution is invariant
under shifts in time). Then the covariance depends only on the time difference
– or rather, its modulus, as the covariance is the same for two variables, either
way round; similarly for the correlation, on dividing by the variance σ2. Write
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this as ρ(k) at lag k:

ρ(k) = ρ(−k) = E[XtXt−k].

Multiplying (AR(p)) by Xk and taking expectations gives

ρ(k) = φ1ρ(k − 1) + . . . + φpρ(k − p) (k > 0). (Y W )

These are the Yule–Walker equations (G. Udny Yule in 1926, Sir Gilbert Walker
in 1931). One has a difference equation of order p, with characteristic polynomial

λp − φ1λ
p−1 − . . . − φp = 0.

If λ1, ..., λp are the roots of this polynomial, then the general solution is

ρ(k) = c1λ
k
1 + . . . + cpλ

k
p

(if the roots are distinct, with appropriate modification for repeated roots).
Since ρ(.) is a correlation, one has |ρ(k)| ≤ 1 for all k, which forces

|λi| ≤ 1 (i = 1, . . . , p).

One may instead deal with moving average processes of order q,

Xt = θ1εt−1 + . . . + θqεt−q + εt, (MA(q))

or with a combination,

Xt = φ1Xt−1 + . . . + φpXt−p + θ1εt−1 + . . . + θqεt−q + εt. (ARMA(p, q))

The class of autoregressive moving average models, or ARMA(p, q) processes,
is quite rich and flexible, and is widely used. We refer to e.g. Box and Jenkins
(1970), Brockwell and Davis (2002) for details and background.

9.4.1 Cointegration and spurious regression

Integrated processes. One standard technique used to reduce non-stationary
time series to the stationary case is to difference them repeatedly (one differ-
encing operation replaces Xt by Xt − Xt−1). If the series of dth differences is
stationary but that of (d − 1)th differences is not, the original series is said to
be integrated of order d; one writes

(Xt) ∼ I(d).

Cointegration. If (Xt) ∼ I(d), we say that (Xt) is cointegrated with cointegra-
tion vector α if (αT Xt) is (integrated of) order less than d.
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A simple example of cointegration arises in random walks. Suppose Xn =
∑n

i=1ξi with the ξn iid random variables, and Yn = Xn + εn, with the εn

iid errors as above, is a noisy observation of Xn. Then the bivariate process
(X, Y ) = (Xn, Yn) is integrated of order 1, with cointegration vector (1,−1)T .

Cointegrated series are series that tend to move together, and commonly
occur in economics. These concepts arose in econometrics, in the work of
R. F. Engle (1942–) and C. W. J. (Sir Clive) Granger (1934–2009) in 1987.
Engle and Granger gave (in 1991) an illustrative example – the prices of toma-
toes in North Carolina and South Carolina. These states are close enough for
a significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
demand would move the prices towards each other.

Engle and Granger received the Nobel Prize in Economics in 2003. The
citation included the following:

Most macroeconomic time series follow a stochastic trend, so that
a temporary disturbance in, say, GDP has a long-lasting effect. These
time series are called nonstationary; they differ from stationary series
which do not grow over time, but fluctuate around a given value. Clive
Granger demonstrated that the statistical methods used for station-
ary time series could yield wholly misleading results when applied to
the analysis of nonstationary data. His significant discovery was that
specific combinations of nonstationary time series may exhibit station-
arity, thereby allowing for correct statistical inference. Granger called
this phenomenon cointegration. He developed methods that have be-
come invaluable in systems where short-run dynamics are affected by
large random disturbances and long-run dynamics are restricted by
economic equilibrium relationships. Examples include the relations be-
tween wealth and consumption, exchange rates and price levels, and
short and long-term interest rates.

Spurious regression. Standard least-squares models work perfectly well if they
are applied to stationary time series. But if they are applied to non-stationary
time series, they can lead to spurious or nonsensical results. One can give
examples of two time series that clearly have nothing to do with one another,
because they come from quite unrelated contexts, but nevertheless have quite
a high value of R2. This would normally suggest that a correspondingly high
proportion of the variability in one is accounted for by variability in the other
– while in fact none of the variability is accounted for. This is the phenomenon
of spurious regression, first identified by Yule in 1927, and later studied by
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Granger and Newbold in 1974. We can largely avoid such pitfalls by restricting
attention to stationary time series, as above.
ARCH and GARCH.
The terms homoscedastic and heteroscedastic are used to describe processes
where the variance is constant or is variable. With Zi independent and normal
N(0, 1), the autoregressive conditionally heteroscedastic (ARCH) model of order
p, or ARCH(p), is defined by the model equations

Xt = σtZt, σ2
t = α0 +

∑p

i=1
αiX

2
t−i, (ARCH(p))

for α0 > 0 and αi ≥ 0. The AR(p) character is seen on the right of the second
equation; the conditional variance of Xt given the information available at time
t − 1 is σ2

t , a function of Xt−1, . . . , Xt−p, and so varies, hence the conditional
heteroscedasticity. In the generalised ARCH model GARCH(p, q), the variance
becomes

σ2
t = α0 +

∑p

i=1
αiX

2
t−i +

∑q

j=1
βjXσ2

t−j . (GARCH(p, q))

Both ARCH and GARCH models are widely used in econometrics; see e.g.
Engle’s Nobel Prize citation. We must refer to a specialist time series or econo-
metrics textbook for more details; the point to note here is that regression
methods are widely used in economics and econometrics.

Note 9.9

We observed in §1.2.2 and §7.1 that, while independent errors tend to cancel as
in the Law of Large Numbers, strongly dependent errors need not do so and are
very dangerous in Statistics. The time series models above, which can model
the tendency of high or low values to follow each other, reflect this – though
there we separate out the terms giving rise to this and put them in the main
part of the model, rather than the error.

9.5 Survival analysis

We return to the Poisson point process, Ppp(λ) say, first discussed in §8.4. In
the sequel the parameter λ has the interpretation of an intensity or rate as
follows. For an interval I of length |I|, the number of points of the process
(the number of Poisson points) is Poisson distributed with parameter λ|I|; the
counts in disjoint intervals are independent. This use of an intensity parameter
to measure exposure to risk (of mortality) is generalised below.
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Suppose now we have a population of individuals, whose lifetimes are inde-
pendent, each with distribution function F on (0,∞), which we will suppose
to have density f . If T is the lifetime of a given individual, the conditional
probability of death in a short interval (t, t + h) given survival to time t is,
writing F (t) := 1 − F (t) = P (T > t) for the tail of F ,

P (T ∈ (t, t + h)|T > t) = P (T ∈ (t + h))/P (T > t) = hf(t)/F (t),

to first order in h. We call the coefficient of h on the right the hazard function,
h(t). Thus

h(t) = f(t)/
∫ ∞

t

f(u) du = −D

(∫ ∞

t

f

)

/

∫ ∞

t

f,

and integrating one has

log
(∫ ∞

t

f

)

= −
∫ t

0

h :
∫ ∞

t

f(u) du = exp
{

−
∫ t

0

h(u) du

}

(since f is a density,
∫ ∞
0

f = 1, giving the constant of integration).

Example 9.10

1. The exponential distribution. If F is the exponential distribution with pa-
rameter λ, E(λ) say, f(t) = λe−λt, F (t) = e−λt, and h(t) = λ is constant. This
property of constant hazard rate captures the lack of memory property of the
exponential distributions (for which see e.g. the sources cited in §8.4), or the
lack of ageing property: given that an individual has survived to date, its fur-
ther survival time has the same distribution as that of a new individual. This
is suitable for modelling the lifetimes of certain components (lightbulbs, etc.)
that fail without warning, but of course not suitable for modelling lifetimes of
biological populations, which show ageing.
2. The Weibull distribution.

Here
f(t) = λν−λtλ−1 exp{−(t/λ)ν},

with λ, ν positive parameters; this reduces to the exponential E(λ) for ν = 1.
3. The Gompertz-Makeham distribution.

This is a three-parameter family, with hazard function

h(t) = λ + aebt.

This includes the exponential case with a = b = 0, and allows one to model
a baseline hazard (the constant term λ), with in addition a hazard growing
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exponentially with time (which can be used to model the winnowing effect of
ageing in biological populations).

In medical statistics, one may be studying survival times in patients with
a particular illness. One’s data is then subject to censoring, in which patients
may die from other causes, discontinue treatment, leave the area covered by
the study, etc.

9.5.1 Proportional hazards

One is often interested in the effect of covariates on survival probabilities. For
example, many cancers are age-related, so the patient’s age is an obvious co-
variate. Many forms of cancer are affected by diet, or lifestyle factors. Thus
the link between smoking and lung cancer is now well known, and similarly
for exposure to asbestos. One’s chances of contracting certain cancers (of the
mouth, throat, oesophagus etc.) are affected by alcohol consumption. Breast
cancer rates are linked to diet (western women, whose diets are rich in dairy
products, are more prone to the disease than oriental women, whose diets are
rich in rice and fish). Consumption of red meat is linked to cancer of the bowel,
etc., and so is lack of fibre. Thus in studying survival rates for a particular
cancer, one may identify a suitable set of covariates z relevant to this cancer.
One may seek to use a linear combination βT z of such covariates with coef-
ficients β, as in the multiple regression of Chapters 3 and 4. One might also
superimpose this effect on some baseline hazard, modelled non-parametrically.
One is led to model the hazard function by

h(t; z) = g(βT z)h0(t),

where the function g contains the parametric part βT z and the baseline hazard
h0 the non-parametric part. This is the Cox proportional hazards model (D. R.
Cox in 1972). The name arises because if one compares the hazards for two
individuals with covariates z1, z2, one obtains

h(t; z1)/h(t; z2) = g(βT z1)/g(βT z2),

as the baseline hazard term cancels.
The most common choices of g are:

(i) Log-linear : g(x) = ex (if g(x) = eax, one can absorb the constant a into β);
(ii) Linear : g(x) = 1 + x;
(iii) Logistic: g(x) = log(1 + x).
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We confine ourselves here to the log-linear case, the commonest and most im-
portant. Here the hazard ratio is

h(t; z1)/h(t; z2) = exp
{
βT (z1 − z2)

}
.

Estimation of β by maximum likelihood must be done numerically (we
omit the non-parametric estimation of h0). For a sample of n individuals, with
covariate vectors z1, . . . , zn, the data consist of the point events occurring – the
identities (or covariate values) and times of death or censoring of non-surviving
individuals; see e.g. Venables and Ripley (2002), §13.3 for use of S-Plus here,
and for theoretical background see e.g. Cox and Oakes (1984).

9.6 p >> n

We have constantly emphasised that the number p of parameters is to be kept
small, to give an economical description of the data in accordance with the
Principle of Parsimony, while the sample size n is much larger – the larger
the better, as there is then more information. However, practical problems in
areas such as bioinformatics have given rise to a new situation, in which this
is reversed, and one now has p much larger than n. This happens with, for
example, data arising from microarrays. Here p is the number of entries in a
large array or matrix, and p being large enables many biomolecular probes to be
carried out at the same time, so speeding up the experiment. But now new and
efficient variable-selection algorithms are needed. Recent developments include
that of LASSO (least absolute shrinkage and selection operator) and LARS
(least angle regression). One seeks to use such techniques to eliminate most
of the parameters, and reduce to a case with p << n that can be handled by
traditional methods. That is, one seeks systematic ways to take a large and
complex problem, in which most of the parameters are unimportant, and focus
in on the small subset of important parameters.



Solutions

Chapter 1

1.1

Q(λ) = λ2 1
n

∑n

1
(xi − x)2 + 2λ

1
n

∑n

1
(xi − x)(yi − y) +

1
n

∑n

1
(yi − y)2

= λ2(x − x)2 + 2λ(x − x)(y − y) + (y − y)2

= λ2Sxx + 2λSxy + Syy.

Now Q(λ)≥0 for all λ, so Q(·) is a quadratic which does not change sign. So
its discriminant is ≤0 (if it were > 0, there would be distinct real roots and a
sign change in between). So (‘b2 − 4ac ≤ 0’):

s2
xy≤sxxsyy = s2

xs2
y, r2 := (sxy/sxsy)2≤1.

So

−1 ≤ r ≤ + 1,

as required.
The extremal cases r = ±1, or r2 = 1, have discriminant 0, that is Q(λ)

has a repeated real root, λ0 say. But then Q(λ0) is the sum of squares of
λ0(xi − x) + (yi − y), which is zero. So each term is 0:

λ0(xi − x) + (yi − y) = 0 (i = 1, . . ., n).

That is, all the points (xi, yi) (i = 1, . . ., n), lie on a straight line through the
centroid (x, y) with slope −λ0.

227



228 Solutions

1.2
Similarly

Q(λ) = E
[
λ2(x − Ex)2 + 2λ(x − Ex)(y − Ey) + (y − Ey)2

]

= λ2E[(x − Ex)2] + 2λE[(x − Ex)(y − Ey)] + E
[
(y − Ey)2

]

= λ2σ2
x + 2λσxy + σ2

y.

(i) As before Q(λ)≥0 for all λ, as the discriminant is ≤0, i.e.

σ2
xy ≤ σ2

xσ2
y, ρ := (σxy/σxσy)2 ≤ 1, − 1 ≤ ρ ≤ + 1.

The extreme cases ρ = ±1 occur iff Q(λ) has a repeated real root λ0. Then

Q(λ0) = E[(λ0(x − Ex) + (y − Ey))2] = 0.

So the random variable λ0(x−Ex)+(y−Ey) is zero (a.s. – except possibly on
some set of probability 0). So all values of (x, y) lie on a straight line through
the centroid (Ex,Ey) of slope −λ0, a.s.

1.3
(i) Half-marathon: a = 3.310 (2.656, 3.964). b = 0.296 (0.132, 0.460).
Marathon: a = 3.690 (2.990, 4.396). b = 0.378 (0.202, 0.554).
(ii) Compare rule with model y = eatb and consider, for example, dy

dt (t). Should
obtain a reasonable level of agreement.

1.4
A plot gives little evidence of curvature and there does not seem to be much
added benefit in fitting the quadratic term. Testing the hypothesis c = 0 gives
a p-value of 0.675. The predicted values are 134.44 and 163.89 for the linear
model and 131.15 and 161.42 for the quadratic model.

1.5
The condition in the text becomes

(
Suu Suv

Suv Svv

)(
a

b

)

=
(

Syu

Syv

)

.

We can write down the solution for (a b)T as
(

Suu Suv

Suv Svv

)−1(
Syu

Syv

)

=
1

SuuSvv − S2
uv

(
Svv −Suv

−Suv Suu

)(
Syu

Syv

)

,

giving

a =
SvvSyu − SuvSyv

SuuSvv − S2
uv

, b =
SuuSyv − SuvSyu

SuuSvv − S2
uv

.
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1.6
(i) A simple plot suggests that a quadratic model might fit the data well
(leaving aside, for the moment, the question of interpretation). An increase
in R2, equivalently a large reduction in the residual sum of squares, suggests
the quadratic model offers a meaningful improvement over the simple model
y = a + bx. A t-test for c = 0 gives a p-value of 0.007.
(ii) t-tests give p-values of 0.001 (in both cases) that b and c are equal to zero.
The model has an R2 of 0.68, suggesting that this simple model explains a rea-
sonable amount, around 70%, of the variability in the data. The estimate gives
c = −7.673, suggesting that club membership has improved the half-marathon
times by around seven and a half minutes.

1.7
(i) The residual sums of squares are 0.463 and 0.852, suggesting that the linear
regression model is more appropriate.
(ii) A t-test gives a p-value of 0.647, suggesting that the quadratic term is not
needed. (Note also the very small number of observations.)

1.8
A simple plot suggests a faster-than-linear growth in population. Sensible sug-
gestions are fitting an exponential model using log(y) = a + bt, or a quadratic
model y = a+bt+ct2. A simple plot of the resulting fits suggests the quadratic
model is better, with all the terms in this model highly significant.

1.9
(i) Without loss of generality assume g(·) is a monotone increasing function.
We have that FY (x) = P(g(X)≤x) = P(X≤g−1(x)). It follows that

fY (x) =
d

dx

∫ g−1(x)

−∞
fX(u) du,

= fX

(
g−1(x)

)
(

dg−1(x)
dx

)

.

(ii)

P(Y ≤x) = P(eX≤x) = P(X≤ log x),

fY (x) =
d

dx

∫ logx

∞

1√
2πσ

e−
(y−μ)2

2σ2 dy,

=
1√
2πσ

x−1 exp
{

− (log x − μ)2

2σ2

}

.
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1.10
(i) P (Y ≤x) = P (r/U≤x) = P (U≥r/x). We have that

fY (x) =
d

dx

∫ ∞

r/x

(
1
2

) r
2 u

r
2−1e−

u
2 du

Γ ( r
2 )

,

=

(
r
x2

) (
1
2

) r
2
(

r
x

) r
2−1

e−
r
2x

Γ
(

r
2

) ,

=
r

r
2 x−1− r

2 e−
r
2x

2
r
2 Γ
(

r
2

) .

(ii) P(Y ≤x) = P(X≥1/x), and this gives

fY (x) =
d

dx

∫ ∞

1
x

ua−1bae−bu du

Γ (a)
,

=

(
1
x2

)
ba
(

1
x

)a−1
e−b/x

Γ (a)
,

=
bax−1−ae−b/x

Γ (a)
.

Since the above expression is a probability density, and therefore integrates to
one, this gives

∫ ∞

0

x−1−ae−b/x dx =
Γ (a)
ba

.

1.11
We have that f(x, u) = fY (u)φ(x|0, u) and ft(r)(x) =

∫∞
0

f(x, u)du, where φ(·)
denotes the probability density of N(0, u). Writing this out explicitly gives

ftr
(x) =

∫ ∞

0

r
r
2 u−1− r

2 e−
r
2u

2
r
2 Γ
(

r
2

) .
e−

x2
2u

√
2πu

1
2

du,

=
r

r
2

2
r
2 Γ ( r

2 )
√

2π

∫ ∞

0

u− 3
2− r

2 e
−
[

r
2+ x2

2

]
1
u du,

=
r

r
2

2
r
2 Γ ( r

2 )
√

2π

Γ
(

r
2 + 1

2

)

[
r
2 + x2

2

]( 1
2+ r

2 )
,

=
Γ
(

r
2 + 1

2

)

√
πrΓ ( r

2 )

(

1 +
x2

r

)− 1
2 (r+1)

.


